
www.manaraa.com

PROGRAMMING DATA STRUCTURES
IN LOGIC

Russell Turpin
The University of Texas at Austin, 1992

Abstract: Current programming languages that are grounded in a formal logic — such as pure

Lisp (based on the lambda calculus) and Prolog (based on Horn clause logic) — do not support

the use of complex, pointer-based data structures. The lack of this important feature in logically

grounded languages contrasts sharply with its strong support in the imperative programming

languages that have enjoyed wide application, of which C is a prime example. Unfortunately,

the formal methods for reasoning about imperative languages have not proved broadly useful

for reasoning about programs that manipulate complex, pointer-based data structures. Between

these two camps resides an open question: How can we verify programs involving complex,

pointer-based data structures?

This work gives an answer to this question. It describes a programming language in which a

programmer can define logical predicates on data structures and pointers, and use these

predicates to specify programs that manipulate complex, pointer-based data structures. These

programs may dynamically allocate memory and destructively modify their arguments. This

solution is grounded in two theoretical advances. (1) This work develops afirst-order logic for

data structures that formalizes the notions that are necessary for defining and reasoning about

relationships between data structures, including notions such as the address of a data structure,

pointer reference, reachability via pointer reference, and data structure overlap. (2) This work

provides acompilation algorithm, based on acalculus of procedure composition, that generates

procedural code from a program specified in the logic. Compilation is in the style of automatic

programming, and relies on the programmer, using theorem proving tools, to verify assertions

in the logic that are generated by the compilation algorithm.

www.manaraa.com

Table of Contents

1. Introduction 1

1.1 The Problem and the Approach 3

1.2 Related Work 10

1.3 Plan of the Dissertation 14

2. The Logic 17

2.1 Preliminaries 18

2.2 Deductive Apparatus 20

2.3 The Sorts 21

2.4 The Intended Model for the Logic 26

2.5 Axiomatic Characterization of the Sorts 28

2.6 Comparing Data Structures 33

2.7 Functions that Modify Composite Values 38

2.8 Characterizing Memory States 42

3. Programming with the Logic 45

3.1 Introduction to Program Specification 46

3.2 Using Galois Programs 48

3.3 Program Preparation 50

3.4 The Elements of Galois 53

3.5 Examples and Discussion 56

3.6 Pointers, Sets, and Memory Management 61

3.7 Restrictions on Use of the Logic for Programs 63

www.manaraa.com

4. Relational Models of Logic 65

4.1 Review of Relational Algebra 65

4.2 Relational Interpretation of Logic 67

4.3 Models and Least Fixed-Point Extensions to the Logic 69

4.4 Extensions to The Intended Model 72

4.5 The Semantic Map 72

5. Program Specification & Compilation 73

5.1 Procedural Semantics 74

5.2 Composing Procedures 77

5.3 From Program Specifications to Code 89

5.4 The Contract between the Calling Program and a Galois Program 93

6. Computation Graphs: An Intermediate Representation 98

6.1 Introduction to Computation Graphs 99

6.2 Constructing Graphs from a Program Specification 103

6.3 Augmenting Computation Graphs with Control Information 109

6.4 Memory Management 110

6.5 Reasoning on Computation Graphs 114

7. Producing C Code 117

7.1 Skeleton Code for Programs 118

7.2 Code for Procedure Compositions 122

7.3 Functions and Base Predicates 131

7.4 Variable Allocation & Deallocation 135

www.manaraa.com

8. Compilation Examples 136

8.1 A Simple Example 136

8.2 An Example with Dynamic Memory 141

9. Conclusion 146

9.1 Accomplishments 146

9.2 Current Development 147

9.3 Future Research 148

Glossary 152

Bibliography 159

Vita 165

www.manaraa.com

1

1. Introduction

The goal of this research is to establish a representation for programs

and an accompanying compilation process satisfying three criteria:

(1) Expressiveness for data structures. Programmers can use the representation to

define and manipulate general data structures, including those that involve

complex pointer relationships.

(2) Run-time efficiency. The representation compiles to efficient code.

(3) Support for formal reasoning. The representation supports formal reasoning

about the data structures and their manipulations.

The importance of this research lies in the combination of these criteria.

Imperative programming languages, of which C will serve as the paradigmatic

example, achieve the first two criteria, but they do not support formal reasoning.

Logic languages and applicative languages support formal reasoning — in their

theoretically pure forms — but they do not provide the expressive power and

efficiency of C when dealing with general data structures, especially those with a

complex pointer structure. This work presents a new paradigm for logic

programming that attains the stated goal.

The traditional implementations of logic programming, based on

unification and goal expansion, search the space of possible proofs by generating

all possible substitution terms, each of which satisfies some of the clauses of the

logic program. Efficient execution of a logic program must avoid this kind of

speculative computation. Efficiently maintaining some kinds of data structures

also requiresdestructive update, where the resulting data structure instance is

produced by changing a portion of the original data structure instance, withoutany

copying of the unchanged portion.

The compilation process described in this work determines a static

order of computation for a program that realizes a logical predicate. It builds a

procedure that realizes the predicate from procedures that realize the logical

components of the predicate. At run-time, the program binds values to variables in

www.manaraa.com

2

an order that incrementally satisfies portions of the predicate, until all output

variables are bound to values that satisfy the entire predicate. The run-time

execution isprogressive: once made, a binding is never undone. The run-time

execution is alsoeffective: if there exist output values that satisfy the predicate,

then the execution finds these values.

The compilation process supports the incremental construction of

libraries of verified programs. A program that is produced by the compilation

process is known to satisfy its specification, and becomes available for use in

compiling a larger program whose specification makes use of the first program’s

predicate.

The compilation process applies generally to languages based on the

first-order predicate calculus. In counterpoint to the good qualities listed above, it

suffers two weaknesses. First, the compilation process may require the

programmer to modify, in a way that preserves logical equivalence, the original

predicate definition. Predicates can be defined at a level that is “too abstract” for

compilation, in which case they must be written in a computationally more

concrete fashion so that the compilation process can produce code for them.

Second, the compilation process depends on an oracle that tells whether assertions

in the logic are true. In practice, this oracle is the programmer working with

available theorem-proving tools. Wrongly verifying a false assertion may cause

the compilation process to produce incorrect code. Failure to verify a true assertion

will prevent the compilation process from producing code for the program in

question. Both of these issues are examined in detail in this work.

This combination of qualities in the compilation process — on the

positive side, the generation of progressive and effective executables for programs

that are logically specified, and the hierarchical composition of verified programs,

and on the negative side, the expense and trouble of an interactive compilation

process — may be useful in application domains other than data structure

programming. This research direction is not explored in the current work.

www.manaraa.com

3

1.1 The Problem and the Approach

Addressed memory is the primary store for virtually all modern

computer systems.1 This basic fact permeates the art and practice of software.

Software engineers think of data structures in terms of addressed memory: this

piece over here points to that piece over there. Programmers still cut their eye teeth

on Knuth’s multivolume work [32], large portions of which are concerned with the

problems of addressed memory. The popular imperative languages such as C,

Pascal, and Modula are characterized by the freedom they give the programmer to

allocate, release, and point to memory. (In this regard, the modern language C++ is

distinguished by the complexity of mechanisms available and the subtlety of the

rules that must be followed in writing correct programs.)

Addressed memory is cheap, and its direct use in programming

languages is powerful. But this power carries a price. In industry, software projects

that use these languages are plagued by subtle bugs that are traced — with

difficulty, and often after great expense — to mangled pointers or erroneous

memory management. Businesses that develop software evaluate expensive

software development tools partly on their ability to help with these kinds of bugs.

Even the customer becomes aware of the software problems associated with the

cavalier use of addressed memory, when a delivered product exhibits a memory

“leak” or displays an occasional tendency to trounce on the wrong data.

Academia has proposed a variety of formal approaches to deal with the

software problem. Programming languages are given formal semantics, so that one

can prove things about them, and mathematical languages such as theλ–calculus

and Horn clause logic are implemented as programming systems. These

approaches provide views of data structures that are considerably more abstract

than the addressed memory visible to the C programmer. Conversely, the C

1 While novel memory architectures are explored in research environments and serve some
specialized niches — such as the use of associative memory for regular pattern matching
and the synaptic memory in neural nets for more complex pattern recognition — random
access memory is far more economical for most purposes, and is likely to remain so for
the foreseeable future.

www.manaraa.com

4

programmer’s understanding of data structures has resisted formal treatment.

This work takes the pointer-based data structures that are the staple of

the C programmer as a litmus test of formal methods. It assumes that the

expressiveness of C in this regard is worthwhile, and that for practical reasons, it is

not something that will be easily discarded. Using this litmus test, it is fair to

classify how formal methods deal with data structures into three groups.

Avoidance. Many semantically “clean” languages rely only on a view of data

structures that is considerably simpler than that available to the C programmer.

For example, pure Lisp [62] relies on lists and Prolog [14] relies on functors.

Algebraic data types [23] rely on initial algebras. The problem with this approach

is that the reliance on simpler data structures limits the applications for which the

language is used. Often, a language such as these is extended with constructs that

support more general data structure use, but that sully its formal cleanliness.

Prevention. The semantics of languages such as C can be axiomatized using

continuations and a notion of global memory state [22, 53]. This approach has

proved impractical, despite some efforts to build support for verification into

programming environments [3]. Languages such as C have resisted the broad use

of formal techniques to verify complex programs written in them.

Camouflage. Infinite, recursive structures provide a view of data structures that are

roughly equivalent to the pointer-based data structures of C. Similarly, graph

grammars [54, 55] have been used to implement data structures more general than

lists and arrays. While these formal approaches attempt to deal head on with

complex data structures, their views of data structures are foreign to programmers

familiar with the classical notions, and they provide less expressiveness than C,

especially regarding memory management and destructive update.

Rather than rejecting the pointers and data structures of C as something

too ugly for study, trying to create an axiomatic or denotational semantics for an

imperative language (very hard!), or hiding data structures behind mathematical

objects such as infinite graphs, this work embeds the data structures and pointers

of C in a first-order logic, giving them a formal foundation while preserving most

of the C programmer’s understanding of them. The problem this work tackles, and

the approach it takes, are summarized below.

www.manaraa.com

5

Problem Statement:

Is there a way to program pointer-based data structures that preserves the

expressiveness and efficient execution of C, while providing support for formal

reasoning?

Approach:

(1) Develop afirst-order logic in which one can express invariants for, operations on,

and proofs about data structures.

(2) Develop acompilation process that turns operations expressed in the logic into

efficient C programs.

There is a special benefit to this approach that deserves comment. Code

reuse is one of the major problems in the engineering of large software systems

involving complex data structures. With procedural programming, code reuse

relies on the programmer understanding that a particular procedure has the desired

behavior, and identifying that procedure by name. The development of object-

oriented languages makes reuse a little easier, by allowing the programmer to

specify some logical properties between different kinds of data structures, to wit,

that one kind of data structure is a specialization of a second, and shares in its

invariants and methods, unless these are explicitly redefined. With the

programming paradigm developed in this work, data structure invariants are fully

stated in a first-order logic. These invariants are used to verify that programs are

applied only to data structures on which they correctly operate. In short, a

procedural programming environment “knows” only the name of a piece of code.

An object-oriented programming environment additionally “knows” about

inheritance and genericity relationships between data types. But a logic

programming environment “knows” fully of what a program does, and what

preconditions are required for it. This leads to the possibility of code reuse through

theorem proving, something that could become especially important for large

software systems that rely on complex data structures [11]. This theme is only

lightly explored in this work, though its promise is a motivating influence.

The approach stated above requires the development of a logic and the

development of a compilation process. These are now summarized.

www.manaraa.com

6

The Logic

The logic presented in Chapter 2 is built on a hierarchy of sorts that

capture fairly well the data types of C, including a notion of pointer reference. A

measure of the fidelity of this mapping is that most sort expressions are carried by

the compiler into C declarations without any syntactic change. For example, a

logical variable whose sort is struct Pt {float X; float Y;} will be

identically typed in C. Pointers in the logic generally behave as they do in C,

though some of the intricacies of C’s pointer arithmetic are absent.

The logic was developed as an extension of the many-sorted first-order

predicate calculus, rather than as a variety of Horn clause logic. This departure

from the custom of the logic programming community was motivated by a

personal preference for the programming style afforded by the predicate calculus,

and made possible by the compilation process. Regarding the first issue, the author

believes that localizing the definition of a new predicate in a single logical formula

makes programs more understandable. This style of logical definition is closer to

the way logic is used in the many other areas to which it is applied as a medium for

rigorous communication. Regarding the second issue, much of the impetus for

Horn clause logic stems from the use of algorithms that require it, such as SLD

resolution [14]. For the sake of run-time efficiency, the logic programming

language described in this work does not use SLD resolution, nor even perform

run-time unification. Departing from this kind of implementation removes much of

the motivation for using Horn clause logic. (Bowen wrote an early paper [10] on

the use of full first-order logic for programming.)

Horn clause logic has also been popular for theoretical reasons.

Because Horn clause logic restricts the use of negation, it is easy to assign

semantic models to new predicates defined in it [2, 37]. Recent developments in

semantics [20, 57] have broadened the class of logic programs that can be assigned

models, and lessened the restrictions on the use of negation. Chapter 4 presents the

semantic theory of the logic used in this work. A recursively defined predicate is

assigned a model that is a least-fixed point extension of the logic, providing the

recursive definition meets a syntactic restriction similar to stratification. Unlike

www.manaraa.com

7

most work in the logic programming community, negation is given its classical

meaning.

The Compilation Process

As adumbrated above, this work describes an implementation of

programs specified in logic that is very different from the traditional

implementation logic programming languages, such as Prolog. A large portion of

the current work explains a compilation process that turns a program specification

into an executable unit of code in a conventional language, of which C is taken as

the prime example. The compilation process is sketched in Figure 1.

Figure 1: The compilation process.

The process begins with the programmer defining a predicate that states

the post-condition for a desired program. The programmer then forms a program

specification that references the predicate as the program’s postcondition. The

1. Define a predicate in the logic.

2. Specify desired semantic properties.

front-end

computation
graph

prerequisite assertion
(formula in the logic)

3. Verify assertion.

back-end

procedure in conventional

library

theorem-proving
tools

predicate definition

language (e.g., C function)

Assertion
 is false.

Front-end fails.

n. Programmer’s task.

intermediate data

software component

Key to Labels:
program specification

www.manaraa.com

8

program specification also specifies the program’s precondition, which of the

predicate’s arguments are intended to receive input values and which are intended

to produce output values,2 and a list of the desiredexecution properties for the

program. Execution properties are requirements such as whether the program

should produce all sets of output values that satisfy the predicate or only one such

set, and whether the program must terminate if the predicate cannot be satisfied.3

A front-end compiler parses the predicate definition, determines if it

satisfies the syntactic restrictions, and builds from the program specification an

intermediate representation of a procedure that realizes the predicate. This

procedure is a composition of (1) procedures that are part of a presupplied stock,

and (2) procedures that were created from the earlier, successful compilation of

other programs. The front-end relies on acalculus of procedure composition. This

calculus has a set of composition rules each of which composes a procedure that

realizes a logical construct — e.g.,θ⇒ϕ — from procedures that realize the

constituent formulae — e.g.,θ andϕ. For each such composition, the calculus

derives (1) execution properties for the composed procedure, and (2) a

precondition that qualifies the input set for which the composed procedure realizes

its postcondition. The precondition for the final procedure must be entailed by the

precondition in the program specification. This entailment is theprerequisite

assertion for the compiled program. In other words, the front-end compiler

generates an intermediate representation of a procedure and a meta-theorem that

says “this procedure satisfies the program specification if theprerequisite

assertionα holds,” whereα is a closed formula in the logic.

At this point, a traditional compiler would produce code in the target

language from the intermediate representation. In our scheme, there is little point

in producing code unless its execution will satisfy the program specification, and

this is known to be the case only if the prerequisite assertion generated by the front-

end is a theorem in the logic. Before code is produced, the programmer must verify

2 In the logic programming community, the direction of data flow through a variable is
called the variable’smode.

3 Chapter 3 defines the execution properties and describes program specification.

www.manaraa.com

9

the prerequisite assertion. If this assertion is not true, the programmer must revise

the program specification. Ideally, the programmer will work with a suite of

theorem proving tools that help verify assertions or detect how they fail. The kind

of theorem proving tools that are needed, and how they should be integrated into

the programming environment, are important issues that lie beyond the scope of

this dissertation.

Once the prerequisite assertion is verified, the back-end compiler

produces code from the intermediate representation. The recursive definition of

the new predicate, the program specification, and the newly produced program are

stored in a library, so that future programs can be built on the ones previously

compiled. (The data flow into the library is not shown in Figure 1.)

There are two places where the programmer can be stymied in trying to

compile a program. First, the front-end may not find a composition of procedures

that realizes the program’s predicate. This occurs when the predicate is defined too

abstractly in the logic. For example, the logic includes a primitive predicate, data

structure isomorphism, that can be used to specify the deep copy of arbitrarily

complex data structures. No compiler can automatically produce code that

performs general data structure copies. When the compiler fails, the programmer

must redefine the predicate in terms that are computationally simpler, though

logically equivalent. Given the above example, instead of merely asserting

isomorphism between two data structures, the programmer would write a longer,

logically equivalent, probably recursive, predicate that defines relationships

between thecomponent parts of the two data structure instances. In essence, this

tells the front-end: this is how to copy this kind of data structure. Such rewriting is

always possible, because the compiler can generate code for the basic operations

on the primitive data structure sorts.

Second, the programmer can also be stymied after the front-end

produces the prerequisite assertion. If the assertions is false, it indicates that the

program involves operations whose correctness depends on run-time conditions.

Two examples are ubiquitous. First, to subscript an array, the subscript expression

must be within array bounds. Second, to dereference a pointer, the pointer must

www.manaraa.com

10

reference a component of a passed data structure. If the prerequisite assertions are

not theorems in the logic, the programmer must either rewrite the predicate so that

the assertions are tested at run-time, or the programmer must make these assertions

part of the precondition for the program. In the latter case, the prerequisite

assertion becomes an assumption about the data structures against which the

program may execute. The front-end takes into account the preconditions of

component procedures that compose into the current compilation, so that these are

guaranteed either by the nature of the composition or by the precondition of the

composed procedure.

It is worth noting that the semantic theory and compilation process

presented in this work are largely independent of the primitive functions and

predicates that are defined in the logic, and also of the compiler’s target language.

A primitive predicate is built into the system through axioms that logically define

the predicate and library procedures with known execution properties that realize

the predicate. (The axioms make the primitive predicate known to the theorem-

proving tools, while the library procedures give the compiler’s front-end a way to

use the primitive predicate in composing larger programs.) The compiler’s back-

end isolates the target language in the usual fashion. This work focuses on data

structure programming, and targets C as an example, but as suggested earlier, the

general framework may be useful to other application domains.

1.2 Related Work

There are three kinds of related work. First, researchers in automatic

programming have investigated the general question of turning high-level

specifications into executable code. Second, there has been a variety of work on

the representation and verification of data structures. Third, there is some relevant

work on the optimization of logic programs in their more traditional guise. Each of

these three areas is discussed below. The current research is positioned as a novel

kind of automatic programming.

www.manaraa.com

11

Automatic Programming

There is a body of work onautomatic programming, that is, the

generation of programs from high-level specifications through automatic and semi-

automatic transformation and refinement of the specification. Because the research

presented here concerns the generation of programs from high-level specifications,

it falls into this genre, though as will be described shortly, there are some aspects

that set it apart. In [44], Mostow presents a scheme for classifying different

automatic programming systems and surveys several such systems. Mostow

describes this classification scheme as follows:

• Scope: What kinds of software are addressed?

• Power: How much is automated?

• Level: What part of the route from informal requirements to machine language is

addressed?

• Purpose: What parts of the software lifecycle are addressed?

• Knowledge: What kinds of knowledge are explicitly used by the system?

The specification languages used by these systems support the

manipulation of data at an abstract level. At some point during the transformation

from high-level specification into executable program, these abstract data types

and operations must be realized as concrete data structures and procedures that

operate on them. Some of these systems support only simple data types for which

code can be automatically generated without much difficulty. The systems that

support more complex data types are more interesting to our purpose. Of these

latter, the method each uses to refine its data types can be placed into one of three

categories.

(1) Programmer selection from data structure library: Interactive annotation is used

to select concrete data structures to represent the high-level data types. This is the

route taken in KIDS [60].

(2) Automatic selection from data structure library: The automatic programming

system supports a particular application domain, and it uses knowledge of this

domain to automatically select data structures from a stock set. This is

www.manaraa.com

12

exemplified in ELF [59], which supports the creation of VLSI design programs,

andφNIX [6], which supports the creation of applications related to oil well

logging.

(3) Hand-programming of data structures: The programmer is given a way to extend

the kinds of data structures that are targeted. For example, in KBEmacs [67], the

programmer can add newcliches that deal with new kinds of data structures.

None of these methods supports the creation of verified code for general

data structures. (1) and (2) rely on data structure libraries that are written and

tested prior to their use in the automatic programming system. These systems do

not address how these libraries are created nor how they are tested. (3) permits the

programmer to build data structure procedures, but does not support their

verification.

This suggests that the construction of verified data structure libraries is

an appropriate domain for automatic programming. From the perspective of

automatic programming, that precisely describes the purpose of the current work.

Applying Mostow’s categorization scheme, our research is summarized as an

experiment in automatic programming with the following characteristics.

• Scope: Data structure libraries.

• Power: Automatic code generation, but reliance on theorem-prover or

programmer interaction to verify necessary assertions.

• Level: From specifications in first-order logic to code in C.

• Purpose: Creation and verification of component libraries.

• Knowledge: Characteristics of addressed memory, as expressed in the logic’s

axioms and embedded in the calculus of procedure composition.

Representation of Data Structures

The tension between formal neatness and execution efficiency in the

representation of data structures has arisen in several fields. In the field of logic

programming, Kifer [30, 31] and Beeri [7] extend Horn clause logic to include

more complex kinds of data than is available in Prolog, the first with objects and

www.manaraa.com

13

the second with recursive record structures. These extensions do not provide the

expressiveness of C, and neither researcher is concerned with execution efficiency

to the degree with which it is treated in the current work.

The algebraic specification of abstract data types, which directly

addresses this problem, enjoys a rich body of literature. The paper by Guttag [23]

is fundamental. But again, algebraic specification does not provide the desired

expressive power, especially with regard to pointer reference. Furthermore,

efficient implementation remains an open issue.

Hoare [26] wrote on using recursive structures instead of pointer

relationships, arguing that pointers had bad semantic properties similar to the

goto statement. General recursive data structures are formalized using graph

grammars, and researchers such as Pratt [54, 55], Engels [17], and Nagl [45] have

applied these to software development, with Pratt especially focusing on the

representation of data structures. There are two problems. First, it is hard to

program graph grammars. Second, in most of the representations, it is not clear

that the various ways of programming graph grammars support reasoning about

their programs.

Optimization of Logic Programs

The third kind of related work concerns those researchers who have

tried to improve the execution efficiency of logic and applicative programming

languages, especially those concerned with destructive update. Nikhil [51] and

Miwelski [42] have both investigated destructive updates in the applicative

framework. Nam and Henschen [46] turn a certain class of Prolog programs into

procedural code.

The research on constraint programming [5, 36, 64] largely investigates

the efficient execution of certain classes of logic programs, though it is not always

couched in these terms. (Curiously, straddling both sides of the fence, Montanari

[43] uses graph grammars to solve constraint satisfaction problems.) The research

into constraint programming is related to our research through its concern with

www.manaraa.com

14

determining a static data flow that will solve a logical query. Research into

optimizing Prolog execution also touches on this. The work of Warren [66] and the

work of Van Roy and Despain [65] are examples.

1.3 Plan of the Dissertation

This work may be explored in several ways. A computer scientist whose

interest has been sufficiently piqued to delve further might first want to take the

quickest route from logic to C code. This is the core track shown in Figure 2. This

reader will peruse Chapter 2 to become acquainted with the logic, but might only

casually examine the theoretical details, such as the axioms that are presented.

Chapter 3 describes how programs are specified and gives several example

programs. The specification language, which includes the logic as its major part, is

called Galois.4 Chapter 5 describes the calculus of procedure composition and

provides the compilation algorithm that generates a procedure composition from a

program specification. The first example in Chapter 8 shows the working of the

compilation algorithm in a simple case and then meticulously steps through the

production of C code for this case.

4 It is named after the French mathematician Evariste Galois, whose youthful exuberance
gave us an important part of number theory, but also led to his unfortunately early
demise.

www.manaraa.com

15

Figure 2: Plan of the dissertation.

A reader who has a logical bent or who is interested in putting the logic

into a theorem prover will return to Chapter 2, to examine more carefully the

details of the logic’s axioms and the presentation of its intended model. Chapter 4

describes how the logic’s intended model is extended for recursively defined

predicates that satisfy certain syntactic restrictions.

The reader who is interested in the details of compilation will return to

Chapter 6 and Chapter 7. Chapter 6 describes a graphical intermediate

representation for programs. It presents an algorithm that analyzes the deallocation

of memory required by a specified program. It also shows how the graphical

representation can be used to display a program’s prerequisite assertion in an

computation
graphs

C code
production

2nd example:
dynamic memory
& dest. update

axiomatization
of the logic

Ch 2 narrative
description
of the logic

program
specification

in Galois

procedural
calculus &
compilation

model theory
for the logic

1st
example

Ch 4

Ch 2

Ch 3

Ch 5

Ch 6

Ch 7

Ch 8 Ch 8

Core TrackLogician’s Track Compiler Writer’s Track

www.manaraa.com

16

intuitive fashion, helping the programmer to understand its origin and to

understand how to modify the program specification when this is necessary. (The

computation graph and the procedure composition from Chapter 5 provide

equivalent information, but the former is more useful for certain kinds of program

analysis and display.) Chapter 7 describes the production of C code. For the most

part, it works from the procedure composition of Chapter 5, but there are some

references to Chapter 6. These are easily skipped on a first reading. The second

example in Chapter 8 presents a program that works on a dynamically allocated

data structure. This example is used to illustrate the memory deallocation

algorithm from Chapter 6.

The research described in this dissertation is largely conceptual and

theoretical, though the author hopes that the concepts are interesting, that the

theory is sound, and that the current work will see a practical fruition that provides

real benefit. As usual, the last chapter provides a conclusion, and discusses future

research. Of special note is work now in progress by three colleagues who are

supplying the major effort in implementing a prototype programming environment

based on Galois. Mohan Kumar has produced the core of an initial compiler.

Patrick Ray is working on the user interface and is investigating what

programming methodologies are appropriate to Galois. Bhalchandra Ghatate has

put the logic’s sorts and its axioms into a form acceptable to the Boyer-Moore

theorem prover. Using this theorem prover, he has proved the prerequisite

assertions that are generated by the compiler on some examples. This continuing

work will undoubtedly find where the real problems lie with the theory and

algorithms described here, leading to the inevitable revision of theory based on

practice.

In each chapter, figures, definitions, lemmas, and theorems are

numbered from the same sequence, e.g., a chapter with Figure 1, Lemma 2, and

Figure 3 will not have a Figure 2. Lemma 2 lies between Figure 1 and Figure 3. A

reference to a figure, definition, lemma, or theorems always refers to the chapter in

which the reference occurs unless explicitly stated otherwise. The Glossary will

help the reader with how terms are used in this work.

www.manaraa.com

17

2. The Logic

A logic is no more than a language that is made formal through a syntax

that can be automatically recognized, rules of inference that can be automatically

applied, and a recursive set of assumptions, called axioms, about the domain of

discourse. In creating a logic, the hard part is finding a formalization that fits the

intended purpose. Whatthings must be expressible as terms in the logic? What

concepts must be expressible as predicates in the logic? Whatpropositions must be

expressible as sentences in the logic? Whatknowledge must be captured in the

axioms?

The logic described in this Chapter is meant to formalize discourse

about data structures, the kind of discourse that passes between C programmers

discussing a program, or that one reads in programming texts such as Knuth’s [32].

The following English sentences are examples of statements that can be formally

expressed in the logic.

“A linked list is a set of nodes such that (1) every node has a pointer labeled

next , (2) there is a distinguished head node and tail node, (3) every node in the

set can be reached by chasing the next pointer from the head node, and (4) the

last node has a null next pointer.”

“These two B-trees are the same.”

“The insert operation generates a B-tree that has the following relationship to the

input B-tree: ...”

“This data structure instance has unreachable parts.”

“This data structure instance has dangling pointers.”

“The result of the insert operation satisfies the invariants for a B-tree.”

The axioms of the logic capture basic knowledge about data structures.

Two examples are expressed in English below.

“If two data structure instances in the same memory state have the same address,

then they are either identical, or one is an initial part of the other.”

“There is no data structure instance whose address is NULL .”

www.manaraa.com

18

In short, the logic is meant to provide a formal language in which one

can define classes of data structures, define input-output relationships for

operations on data structures, and prove things about these classes and

relationships. This chapter provides a formal description of the logic. First, it

places the logic within the range of traditional logics. It then discusses the

syntactic categories — the sorts — of the logic. These are the things that data

structures are made of: characters, integers, floats, addresses, arrays, structures,

and sets. The last half of the chapter provides and discusses the axioms that define

the various base concepts that are needed, and that capture the necessary

knowledge about data structures. (On first reading, the reader might want to only

peruse the actual axioms, to return to them on a second reading, or when chasing a

reference from later chapters.)

To the extent possible, much of the syntax follows that of C. Ifx is a

data structure, &x is its address; if x is an array, then x[1] is the second element;

and if x is a structure with a field color , then x.color is a reference to that field

in x . Because these are all first-rate terms in a traditional, first-order logic, they

follow rules that are somewhat different from those of C. But the resemblance is

much more than syntactic gloss! As described in Chapter 3, the logic is used to

write programs that compile to C, and this compilation (described in later

chapters) preserves the portions of the logic that share the syntax of C.

2.1 Preliminaries

Begin with the sorted, first-order predicate calculus with equality, as

described, for example, in [19]. True and False are 0-ary predicates (boolean

constants). Include the usual logical participles: negation (~), the boolean

connectives∧, ∨, and⇔ for conjunction, disjunction, and equivalence, and the

universal (∀) and existential (∃) quantifiers. The two symbols⇒ and∇ form a

ternary boolean connective defined as follows:θ⇒ϕ∇φ, read “ifθ thenϕ elseφ,” is

equivalent to((θ∧ϕ) ∨(~θ∧φ)) . The formulaθ⇒ϕ∇True is abbreviated toθ⇒ϕ.

Parentheses are used in the normal fashion to associate formulae. When

parentheses are absent, association is derived by the precedence: ~,∧, ∨, ⇔, ⇒ ∇, ∃,

www.manaraa.com

19

∀. For convenience, a quantifier can apply to a list of variables separated by

commas. Thus, (∃x,y,z) is short for (∃x)(∃y)(∃z) .

As much as possible, this work follows the terminology and

conventions of traditional logic. Aterm is a constant, a variable, or the application

of a function to other terms. Anatom is the application of a predicate to terms. The

terms to which a function or predicate is applied are called itsarguments. A

positive literal is an atom, and anegative literal is the negation of an atom. A

formula is a literal, a quantified formula, or formulae combined with the boolean

connectives. Nested quantifiers may not share quantified variables, and if a

variable is quantified in a formula, then everywhere it appears must be within the

scope of one of its quantifiers. A variable isbound in a formula if it appears only

within the scope of its quantifiers, otherwise it isfree. A logicalobject is a

constant, function, or predicate. Thesignature of an object is its sort together with

the sorts required of its arguments, if any. The sort of a term is the sort of its

outermost function. In forming terms, the arguments of a function or predicate

must match in number and sort the object’s signature. (Note, though, that function

and predicate symbols are sometimes overloaded. When it is said, for example,

that equality applies to any two terms of the same sort, the reader is expected to

understand that formally there is an equality predicate for each sort.)

The logic includes an infinite hierarchy of sorts. This hierarchy is

formed from the repeated application of a fewsort constructors to a fewbase

sorts. A sort expression identifies a sort by name or by the method of its

construction. Sort expressions arenot formulae in the logic; rather, they serve to

type terms in the logic. The next section describes the sort hierarchy.

Formally, a sorted logic has disjoint name spaces for constants,

variables, functions, and predicates, and the name of each object tells its sort and

the number and sort of its arguments. In practice, this would require too awkward a

segmentation of the only name space that is actually available, to wit, character

strings. Like C, anidentifier is any string of letters (including the underscore) and

digits, beginning with a letter. Identifiers are pressed into service as variable,

function, and predicate symbols, and as sort names. The sort of a variable is

www.manaraa.com

20

declared explicitly at the beginning of its lexical scope, which is either the first

time it appears as a free variable, or where it is quantified. Asort declaration has

the formx:sexp or sexp x wherex is the name of the variable andsexp is a sort

expression.

Three of the base sorts areinteger , character , andfloatingPt . The

integers and floating point numbers have the usual functions for addition (+),

subtraction (–), and multiplication (*), and the binary predicates<, >, ², and³ provide

the usual order. The domain of the character sort is a finite alphabet,Γ. A character

constant is written as in C, for example,'a' and'Z' . Characters have a lexical

order, and the symbols<, >, ², and³ are overloaded for this purpose, also.

The symbol for equality is≅. The symbol = is used for a weaker, but

more frequently used, predicate that is true if two data structure instances are equal

in their data, but not necessarily in their addresses. (Data structures are explained

below.)

2.2 Deductive Apparatus

An axiomatization of the integers along standard lines is assumed, for

example, the system Q= in [27]. Any first-order axiomatization of the integers is

semantically incomplete, but because this work does not stray into arcane

mathematics, it is unconcerned with assertions that are independent of the

traditional first-order axiomatizations. The presentation assumes axiom schema

that permit induction of all formulae based on the natural numbers.

This work also assumes a first-order axiomatization of floating point

numbers that includes the appropriate functions for them. Such axiomatization is

clearly dependent on the characteristics of the floating point machine of concern.

Fortunately, the problems of data structures are not tightly coupled to the issues

and algorithms of floating point arithmetic. In what follows, nothing is assumed

about floating point numbers except that they can be tested for equality and have

an order.

www.manaraa.com

21

The lexical order of characters is trivially axiomatized with a finite

number of axioms of the form'a'<'b' , an axiom for the transitive closure of<,

and axioms defining>, ², and³ in terms of<. This work assumes nothing about

characters except for equality and order.

The focus of this work is how the base sorts are composed into more

complex structures. The characteristics of the integers are important, because they

are used to represent lengths and offsets, and because they provide the basis for

induction. Floating point numbers and characters are carried along as

uninterpreted data, though the availability of identity and order makes them

available as keys. Floating point functions are needed so that programmers can lay

floating point algorithms on top of data structures, but this work makes no

assumptions about the behavior of these functions. Axioms for the complex sorts

are given in the following sections of this chapter.

2.3 The Sorts

In addition tointeger , float , andcharacter , there is one other base

sort. The domain of theaddress sort is a denumerable set, each element of which

can be viewed as a unique tag. There are no functions that apply to this sort, and

equality is the only relevant predicate. The constantNULL is a distinguished

address value. The base sorts are listed below.

Sort Name Domain

integer The usual integers.

floatingPt Floating point numbers.

character A lexically ordered, finite alphabet,Γ.

address A denumerably infinite set of tags.

An infinite hierarchy of sorts is constructed from these base sorts. This

hierarchy is shown in Figure 1, below. The explanation of the sort hierarchy will

follow the paths in this diagram.

www.manaraa.com

22

Figure 1: The sort hierarchy.

The least elements in the sort hierarchy are the base sorts. They are

shown in the lower left oval of Figure 1. These do not count as even primitive data

structures, because they lack an address.

An element in a data structure sort is an ordered pair <a , d >. The first

value,a , is anaddress , and it is called theaddress value. The second value,d , is

called thedata value. Unary functions “&” and “@” apply to data structure sorts,

projecting the address and data values. Thus, ifx is a variable of a data structure

sort,&x is the address value ofx, and@x is the data value ofx. The primitive data

structure sorts are created by pairing an address with each of the base sorts. These

are listed below, and are shown in the lower, middle oval of Figure 1.

Base Sorts

integer

int

struct

The Sort Constructors

pair sort with address

Primitive Data

[] (array)

{} (set)

@ (strip off address)

Data Structure Sorts Set SortsAddress-stripped Sorts

floatingPt
character

address

float
char
addr

Structure Sorts

Every arrow is a constructor
that creates more complex

sorts from less complex sorts
(thus moving up the sort

hierarchy), except for the
arrow representing the

deconstructor@.

Composite Data
Structure Sorts

www.manaraa.com

23

Data structure sort Data value

int integer

float floatingPt

char character

addr address

The sort namesint , float , andchar and the address projection

function& are purposely pulled from C. As there, ifx is anint , &x is an address,

and the value ofx is an integer.

Two other sort constructors resemble type constructors available in C.1

These are the array constructor and thestruct constructor. They both define a data

structure sort in terms of one or more other data structure sorts.

Given any data structure sort expressionSexp , Sexp[] is also a data

structure sort expression, called the array ofSexp . Sexp is called the element sort

of the array. There are three basic functions on arrays:len() , which returns the

array length; an indexing function, which returns a value in the element sort; and a

function that extracts subarrays. Ifx is an array ofSexp , declaredx: Sexp[] , and

t , t 0, andt 1 are integer terms, these functions are written as shown below.

Function Notation Sort

array length len(x) integer

element projection x[t] Sexp

subarray projection x[t 0..t 1] Sexp[]

In the last function, ift 0 is omitted, it is assumed to be zero, and ift 1 is

omitted, it is assumed to belen(x)–1 . A small abuse of notation is introduced to

make the syntax more like that of C. Instead ofx:Sexp[] or Sexp[] x , it is

permissible to writex[]:Sexp or Sexp x[] .

Thestruct constructor aggregates a finite set of values, and allows

their selection byfield name. It optionally associates a name with the sort. The

syntax and meaning follows C. For example, the sort expression below defines a

structure that has an address, an array of characters, and an integer, and associates

1 This resemblance is intended. In implementation, instances of these sorts are represented
by instances of the corresponding C data types, as described in Chapter 3.

www.manaraa.com

24

the nameWordNode with this sort.

struct WordNode {

addr Next;

int ChrCount;

char Word[];

}

The field names are postfix functions on the sort. Thus, ifx is a variable

of sortWordNode, declaredx:WordNode or WordNode x , thenx is available to the

functionsNext , ChrCount , andWord, and the application of these functions tox is

writtenx.Next , x.ChrCount , andx.Word . These terms have the sortaddr , int , and

char[] , respectively.

Instances of the composite data structure sorts — array andstruct

sorts — are ordered pairs, each comprising an address value and a data value. As

with the primitive data structure sorts, the unary functions “&” and “@” project

these values. As always,&x is anaddress . If x has the sortSexp , then the sort of@x

is written@Sexp. If Sexp is an array orstruct , @Sexp is the only way to express the

sort of its data value. Used in sort expressions, the operator@ is a sort

deconstructor, as shown by the downward arrows of Figure 1. Since@ just returns

the sort of the data value,@int is integer , and similarly@ returns the base sort of

the other primitive data structure sorts. The sorts given by the@ operator are

collectively called theaddress-stripped sorts.

The logic is also concerned with data structures whose elements are

scattered in memory, tied together only through pointer reference. To describe

these kinds of data structures, aset constructor2 is used. Syntactically, the set

constructor works like the array constructor, except that curly braces,{} , are used

instead of square ones. Also like an array, a set aggregates a finite number of

values from some data structure sort. Unlike an array, a set is not indexed, and a set

does not have an address for the set as a whole. For example, ifx is an instance of

int{} , x could comprise threeint values, with no order specified.

2 The traditional problems of mathematical set theory do not arise, because sets are
stratified by the sort hierarchy. The intended model has only finite sets.

www.manaraa.com

25

As usual, the predicate for set membership is writtena∈x. The sort ofx

must be Sexp{} , wherea has the sort Sexp , called the element sort. The element

sort of a set must be a data structure sort. (Sets of sets and sets whose elements

have a base sort are not allowed.) The basic set functions are listed below.

Function Notation Sort

set cardinality |x| integer

set construction {a, b} Sexp{}

set union x∪y Sexp{}

set intersection x∩y Sexp{}

set difference x–y Sexp{}

Sets are not data structures. But a set can be included as a field in a

struct , and through this, become part of a data structure sort. Everystruct must

have at least one field that is not a set. The inclusion of a set in a data structure is

conceptually important. As the next chapter will discuss, it provides the

programmer a way to express what non-contiguous pieces belong with a data

structure, and through this, how memory is allocated and released. A set’s

inclusion in astruct does not constrain how the set’s elements are laid out in

memory. (Thinking close to the implementation level, a programmer should view

the layout of astruct as unchanged if set fields are added or deleted. Data

representation is discussed in Chapter 3.)

Sets complete the traversal of the sort hierarchy as shown in Figure 1.

In that figure, every arrow except that for the deconstructor@ creates a more

complex sort whose instances are aggregates of instances of simpler sorts. Thus,

the hierarchy is one ofcomposition. (It is not an abstraction or inheritance

hierarchy.) Domains for the sorts are discussed below. Later sections give the

axioms that characterize these domains and the relationships between data

structure instances, their parts, and their addresses. These axioms will reflect much

of a programmer’s intuitive understanding about how data structures and arrays

are laid out in memory.

The array, structure, and set functions described above are those that are

common for these constructs. Section 2.7 describes some functions for modifying

parts of data structures and sets.

www.manaraa.com

26

It is important to keep straight the role played by sorts in a logic. The

sorts arenot defined in the logic. Rather, they are a part of the logic’s definition.

They syntactically characterize terms, and semantically characterize the intended

domains. When a variable’s sort is declared, for example, pt: struct {int V;

int H;} , this doesnot define a new sort. The unique sort that has the postfix

functions V and H returning int values, and no other postfix functions, is

permanently part of the sort hierarchy. The declaration merely says that the

variable pt has this sort, and such declaration is needed only because it is too

cumbersome to reserve disjoint sets of variable names to each sort. Associating a

sort name with a struct definition is merely a notational convenience that saves

repeatedly writing out the structure definition.

2.4 The Intended Model for the Logic

The standard integers are the intended domain for the integer sort. A

finite character alphabet and a set of floating point numbers convenient to the

implementation are the intended domains for the character and floatingPt

sorts. The natural numbers and the special value NULL form the intended domain

for theaddress sort. These are thebase domains.

Structures and arrays aggregate simpler data values sequentially. Sets

aggregate simpler data values without regard to sequence. The intended domains

for the sort hierarchy are created from finite lists and sets, using the domains above

for the base sorts. Denote a list with angle brackets — <a , b , c > — and a set with

curly brackets — {a , b , c }. Sequence is significant in the first but not the second.

Thus, {a , b } = { b , a }, but <a , b > ­ <b , a >. Theintended universe is the smallest

collection that satisfies the following recursive definition. (1) The empty set and

the empty list are in the intended universe. (2) Elements of the base domains are in

the intended universe. (3) Every finite list of and finite set of elements in the

intended universe is also in the intended universe. The narrative below carves this

universe into domains for the sorts. It also gives an intended interpretation to the

functions discussed so far.

www.manaraa.com

27

The sortint has as its intended domain all ordered pairs <a , x > where

a , the address value, is an address other than NULL , andx , the data value, is an

integer. Forchar , float , and addr , the data value ranges over the character,

floating point, and address domains, respectively.

The array sort Sexp[] has as its intended domain all ordered pairs of

the form <a , <e 0,...e n–1>>, wherea is an address other thanNULL, e 0=<a , v > (if

e 0 is present), eache i is in the intended domain ofSexp , and no address valueb

appears in bothe i ande j when i­j. Ifx denotes <a , <e 0,...e n–1>>, then&x denotesa ,

len(x) denotes n, andx[i] denotese i for 0²i<n. Similarly, the structure sort with

fieldsf 0,...f n whose sorts areSexp0,...Sexpn has as its intended domain all ordered

pairs of the form <a , <e 0,...e n>>, wheree i=<a , v > for f i the first non-set field,

eache i is in the intended domain ofSexp i , and no address valueb appears in both

e i ande j when i­j. Ifx denotes <a , <e 0,...e n>>, then&x denotesa andx.f i denotes

e i. The set sortSexp{} has as its intended domain all finite sets {e 0,...e n–1}, where

eache i is in the intended domain ofSexp and no address valueb appears in bothe i

ande j whene i­e j. If x denotes {e 0,...e n-1} and y denotese i, then|x|=n andy∈x

hold.

Notice that each value in the intended domain of a data structure sort is

an ordered pair whose first element is an address. If <a , x > is a value in the

intended domain of the data structure sortSexp , thenx is a value in the intended

domain of@Sexp. If x is composite, i.e., if@Sexp is not one of the base sorts, thena

is also the address of the first non-set component ofx .

Consider anint arrayx, of length two, whose first integer value is 53

and whose second integer value is 32. The value of the arrayx in the intended

domain is a list, shown in the table below, where thea i are address values. Other

terms involvingx, their sorts, and their values, are also shown.

term sort value in intended domain

x int[] <a 0, <<a 0, 53>, <a 1, 32>>>

&x address a 0

@x @int[] <<a 0, 53>, <a 1, 32>>

x[0] int <a 0, 53>

www.manaraa.com

28

&x[0] address a 0

@x[0] integer 53

As a second example, consider the sortstruct Foo {int count;

int values{};} . An instancey of this sort is a structure whose first element is an

integer, say 2, and whose second element is a set of integers, say {42, 53}. Some

terms involvingy are shown below.

term sort value in intended domain

y Foo <a 0 , <<a 0 , 2>, {<a 3, 53>, <a 2,
42>}>>

&y address a 0

@y @Foo <<a 0 , 2>, {<a 3, 53>, <a 2, 42>}>

y.values int{} {< a 3, 53>, <a 2, 42>}

Axioms that characterize the logic are given in the remainder of this

chapter. The above domains and interpretation of functions, together with the

usual understanding of equality on sets and lists, satisfy these axioms, and thus

provide a model of the logic. Models of the logic are discussed in more detail in

Chapter 4.

2.5 Axiomatic Characterization of the
Sorts

The axioms below characterize the compositions that form the sort

hierarchy. These axioms describe when composed sorts are equal, and they

describe the behavior of the functions that project the sorts’ components. We

assume that the base sorts are already axiomatized. (Remember that the symbol≅

is used for strict equality.)

For each data structure sort, characterize equality and forbidNULL addresses:

(1) x≅y ⇔ &x ≅&y ∧ @x≅@y

(2) &x­NULL

For each array sort, characterize equality and define subarrays:

(3) len(x)³0

www.manaraa.com

29

(4) @x≅@y ⇔
len(x) ≅len(y)

∧ (∀i:integer)(0²i<len(x) ⇒ x[i] ≅y[i])

(5) 0²j²k<len(x) ⇒ len(x[j..k])=(k–j+1)

∇ len(x[j..k])=0

(6) (0²i<len(x[j..k]) ⇒ (x[j..k])[i]=x[j+i]

For each structure sort, with fieldsf 0, ... f n, characterize equality

(7) @x≅@y ⇔ x.f 0≅y.f 0 ∧ ... ∧ x.f n≅y.f n

For each set sort with element sortSexp , and every singleton{a} , characterize

equality and the set operations:

(8) x≅y ⇔ (∀z:Sexp)(z ∈x ⇔ z ∈y)

(9) (∀z:Sexp)(z ∈x∪y ⇔ (z ∈x ∨ z ∈y))

(10) (∀z:Sexp)(z ∈x∩y ⇔ (z ∈y ∧ z ∈y))

(11) (∀z:Sexp)(z ∈x–y ⇔ (z ∈x ∧ ~z ∈y))

(12) |x| ³ 0

(13) |EMPTY| = 0

(14) |{a}| = 1

(15) |x ∪y| = |x|+|y|-|x ∩y|

 Like most of the axioms that will follow, the above axioms are actually

axiom schema. Each axiom is repeated for each sort to which it applies. The

intended universe trivially satisfies the above axioms, when the functions are

interpreted as described in Section 2.4.

The next set of axioms define several predicates that relate composite

data structure instances to their parts. These axioms formalize the important notion

of a data structure part beingreachable by offset calculation and pointer chasing.

These predicates can be organized according to their logical strength, indicated by

the arrows in Figure 2. (One predicate is said to belogically stronger than a second

if it entails the second on the same arguments.)

www.manaraa.com

30

Figure 2: The parts predicates for data structures.

The axioms for these predicates are given below. For one data structure

instancex being a part of a second instancey (a notion formalized in the predicate

PartOf(x, y)), an initial part of another (InitialPartOf(x, y)), and a part of

another directly reached by offset calculation (DPartOf(x, y)), the axioms are

organized by the sorts of the arguments. The predicateRPartOf extends the

predicateDPartOf with reachability through pointer reference. A data structure

part islost, a notion formalized in the predicateLPartOf , if it is not reachable.

Forx of data structure sortSexp , andy of sortSexp [] :

(16) InitialPartOf (x, y) ⇔ 0<len(y) ∧ x ≅y[0]

(17) PartOf (x, y) ⇔ (∃i:integer)(0²i<len(y) ∧ x ≅y[i])

(18) DPartOf (x, y) ⇔ (∃i:integer)(0²i<len(y) ∧ x ≅y[i])

Fory of a structure sort, the first non-set fieldf F, all the fieldsf , g,...h of y that

have the same sort asx , where Axioms (19) and (21) apply only ifx is not a set:

(19) InitialPartOf (x, y) ⇔ x ≅y.f F

(20) PartOf (x, y) ⇔ x ≅y.f ∨ x ≅y.g ∨ ... ∨ x ≅y.h

(21) DPartOf (x, y) ⇔ x ≅y.f ∨ x ≅y.g ∨ ... ∨ x ≅y.h

For every data structure sort (and for Axiom (23), every set sort):

(22) InitialPartOf (x, x)

(23) PartOf (x, x)

(24) DPartOf (x, x)

PartOf(x, y)

LPartOf(x, y)RPartOf(x, y)

DPartOf(x, y)

InitialPartOf(x, y)

A data structure instancex is part of an instance
y if it is a field, an array element, or a set member of
y, or (transitively closing) if it is part of a part ofy.

A data structure part isreachable if it can be
referenced through a combination of array
subscripting, field extraction, & pointer reference.

A data structure part isdirectly reachable
if it can be referenced through array
subscripting & field extraction, alone.

A data structure part is aninitial part
if it is the first element of an array, the
first non-set field of a structure, or if it
satisfies the transitive closure of this condition.

A part is alost part
if it is not reachable.

www.manaraa.com

31

PartOf subsumes membership for sets. Forx of sortSexp andy of sort

Sexp{} :

(25) PartOf (x, y) ⇔ x ∈y

Forx andy with data structure sorts (ory a set sorts, forPartOf), where the sort

of x is lower in the sort hierarchy than the sort ofy, but none of the cases above:

(26) InitialPartOf (x, y) ⇔
(∃z)(InitialPartOf (x, z) ∧ InitialPartOf (z, y))

(27) PartOf (x, y) ⇔ (∃z)(PartOf (x, z) ∧ PartOf (z, y))

(28) DPartOf (x, y) ⇔
(∃z)(DPartOf (x, z) ∧ DPartOf (z, y))

Forx andy where the sort ofx is not lower in the sort hierarchy than that ofy, nor

wherex andy have the same sort:

(29) ~InitialPartOf (x, y)

(30) ~PartOf (x, y)

(31) ~DPartOf (x, y)

Fory having a data structure sort,x having a set or data structure sort lower in the

sort hierarchy, and every sortSexp lower in the sort hierarchy than that ofy :

(32) RPartOf (x, y) ⇔ DpartOf (x, y)

∨ (∃p:addr)(∃u:Sexp)(

DpartOf (p, y) ∧ p=&u

∧ PartOf (u, y) ∧ RPartOf (x, u)

)

)

Fory having a data structure sort,x having a set or data structure sort lower in the

sort hierarchy:

(33) LPartOf (x, y) ⇔ PartOf (x, y) ∧ ~RPartOf (x, y)

The parts predicates above can be used to formalize some common

notions about data structure instances. A data structure instance isnavigable if it

has no lost parts. An addressa points into a data structure instance if the instance

has a part whose address value equalsa. A data structure instance has adangling

pointer if it (1) has a part that is an address, and (2) the value of this address neither

points into the data structure instance nor isNULL. Two data structure instances are

disjoint if they have no common components. These notions are formalized in

www.manaraa.com

32

predicates defined below.

Fory having a data structure sort, and every data structure or set sort

Sexp0,...Sexp n, lower in the sort hierarchy:

(34) Navigable (y) ⇔ (

(∀x:Sexp 0)(PartOf (x, y) ⇒ RPartOf (x, y))

∧ ...

∧ (∀x:Sexp n)(PartOf (x, y) ⇒ RPartOf (x, y))

)

Fory having a data structure sort, and every data structure or set sort

Sexp0,...Sexp n, lower in the sort hierarchy:

(35) PointsInto (p, y) ⇔ (

p=&y

∨ (∃x:Sexp 0) (PartOf (x, y) ∧ PointsInto (p, x))

∨ ...

∨ (∃x:Sexp n) (PartOf (x, y) ∧ PointsInto (p, x))

)

(36) HasDangles (y) ⇔ (∃p: addr)

(p­NULL ∧ PartOf(p, y) ∧ ~PointsInto(p, y))

Forx andy having a data structure sort:

(37) Disjoint (x, y) ⇔ (∀p: addr)

(~(PointsInto(p, x) ∧ PointsInto(p, y)))

The next chapter will show how invariants for data structure classes are

defined in the logic. The above predicates are useful in describing desirable

properties of data structures. It is generally good if all parts of a data structure are

reachable, and if it has no dangling pointers. Thus, a programmer would want to

prove in the logic that the invariants defined for a data structure type logically

entail these desirable properties.

The axioms given so far place little restriction on address values. As

described for the intended model, composite data structure instances have the

property that the address of the composite instance equals the address of its first

non-set component. Except for this, addresses do not occur multiple times within a

single data structure instance. The axiom below characterizes these restrictions.

www.manaraa.com

33

Forx andy having data structure sorts lower in the sort hierarchy thanz :

(38) (PartOf(x,z) ∧ PartOf(y,z) ∧ &x=&y) ⇒
(InitialPartOf(x,y) ∨ InitialPartOf(y,x))

The axioms above characterize the intended model. The next few

sections will present axioms that define other functions and predicates, but these

axioms will not constrain the intended domains nor the interpretation of functions

and predicates defined above.

2.6 Comparing Data Structures

Because the logic treats a data structure’s address as a contained piece

of information, if two data structures are equal in the logic, they must have the

same address. They are the same in the strongest possible sense, for example, in

the sense of Fortran equivalence. This notion of strict equality is not very useful

for talking about data structures, where one usually wants to discuss instances that

may occupy different memory locations. (For this reason, the symbol≅ denotes

strict equality, and the symbol = is reserved for a different predicate described

below.) This section defines some weaker but more useful notions of data structure

identity.

Data Equality

The predicate fordata equality, =, holds of two values in a sort if they

are equal, ignoring any address values they contain. The axioms below define data

equality in terms of strict equality. It is defined first for the base sorts, and then for

each of the data structure and set sorts.

Define =, for each base sort:

(39) x=y ⇔ x ≅y

Define =, for each primitive data structure sort:

(40) x=y ⇔ @x≅@y

www.manaraa.com

34

Define =, for each array sort:

(41) x=y ⇔ (

len(x)=len(y)

∧ (∀i:integer)(0²i<len(x) ⇒ x[i]=y[i])

)

Define =, for each structure sort with fieldsf 0,... f n:

(42) x=y ⇔ x.f 0=y . f 0 ∧ ... ∧ x.f n=y . f n

Define =, for each set sortSexp{} :

(43) x=y ⇔ (

(x ≅EMPTY ∧ y ≅EMPTY)

∨ (∃u, v:Sexp)(u ∈x ∧ v ∈y ∧ u=v ∧ x–{u}=y–{v})

The order predicates<, >, ², and³ are extended to the data structure sorts

char , float , andint by applying them just to the data values of these sorts. Unlike

data equality, these are not percolated up the entire sort hierarchy.

The motivation behind reserving the symbol= should now be clear.

Whetherx andy have the base sortinteger or character , or the data structure sort

int or char , the formulaex=y andx<y have their customary meaning. The symbols

= and≅ have identical meaning on the base sorts. By convention, the latter is used

only with data structure and set sorts, and can be read “equal in both data and

location.”

Data Structure Isomorphism

Programmers have a common notion of two data structure instances

being “the same” when their non-pointer data values are equal and when their

pointer values correspond in the “right sense.” Operationally, this sameness can be

viewed as equivalence under the transformation that preserves a data structure

when it is relocated in memory and its pointers are updated accordingly. For

example, if an element of a linked list is relocated in memory, then the pointer to it

from the previous element must be changed to reference the new location. Given

this tracking of the relocation by the pointers involved, the new data structure is

“the same.”

www.manaraa.com

35

The informal description in the previous paragraph of what it means for

two data structure instances to be “the same” appeals to a programmer’s intuition.

Unfortunately, this crucial concept is left informal in most texts on programming

and programming languages. Consider the move from addresses to “links” made

by Knuth, when discussing the representation of a hand of cards on pages 230-231

of [32]:

“The memory locations in the computer representation are shown here as 100,

386, and 242; these could have been any other numbers as far as this example is

concerned, since each card links to the next. ...

“The introduction of links to other elements of data is an extremely important idea

in computer programming; this is the key to the representation of complex

structures. When displaying computer representations of nodes it is usually

convenient to represent links by arrows, ... The actual locations 242, 386, and 100

(which are irrelevant anyway) no longer appear ...”

The “links” that Knuth discusses are an abstraction; they are pointers

embedded in data structures as preserved under the appropriate transformation

when data structures are relocated in memory. The programmer has developed the

right intuition of this if the programmer can make programs that work and can

discuss them with other programmers.

This notion of “sameness” is made formal in the logic as a binary

predicate calleddata structure isomorphism. Two instancesx andy of a data

structure sort are isomorphic, writtenx::y , if they are the “same” in the sense

discussed above, i.e., if a C programmer would declare them the same modulo the

contingent location of their parts in dynamic memory. This predicate is important

to programming in the logic, since it is heavily used to specify changes to data

structures, as described in the next chapter.

There are several possible approaches to defining data structure

isomorphism. The one used below makes use of two lists of pointers, which for

two instances of a data structure sort must act as parallel indices, to wit, the i-th

pointer from the first list and the i-th pointer from the second list (1) reference

analogous parts of the first and second data structure instances, and (2) are equal to

analogous pointers from the first and second data structure instances. A part of the

www.manaraa.com

36

first data structure instance is analogous to a part from the second data structure

instance if it is obtained by using the same array subscripts and the same field

references. The definition of “paired indices” begins the formalization of these

concepts.

Paired indices are same length address arrays (sortaddr[]) neither of which

repeats values:

(44) PairIdx (xIdx, yIdx) ⇔ (

len(xIdx)=len(yIdx)

∧ (∀i,j: integer)(0²i,j<len(xIdx) ⇒ (

(xIdx[i]=xIdx[j] ⇒ i=j)

∧ (yIdx[i]=yIdx[j] ⇒ i=j)

)

)

)

The next few axioms define when data structure instancesx andy of the

same sort are analogous relative to paired indices for them. For instances ofchar

or int , the paired indices must referencex andy from the same subscript, andx

andy must carry the same data value. For theaddr sort, the latter condition is

different: a common subscript must select an address in the first index that equalsx

and a value in the second index that equalsy.

Define “analogous relative to paired indices” forx andy of sortint , float , or

char:

(45) AnaP (x, y, xPtrs, yPtrs) ⇔ (

PairIdx (xPtrs, yPtrs) ∧ x=y

∧ (∃i:integer)(

0²i<len(xIdx) ∧ xIdx[i]=&x ∧ yIdx[i]=&y

)

)

www.manaraa.com

37

Define “analogous relative to paired indices” forx andy of typeaddr:

(46) AnaP (x, y, xPtrs, yPtrs) ⇔ (

PairIdx (x, y, xPtrs, yPtrs)

∧ (∃i:integer)(

0²i<len(xIdx) ∧ xIdx[i]=x ∧ yIdx[i]=y

)

∧ (∃i:integer)(

0²i<len(xIdx) ∧ xIdx[i]=&x ∧ yIdx[i]=&y

)

)

The next three axioms extend the notion of a pair of data structure or set

instances being “analogous relative to a pair of pointer lists” to structures, arrays,

and sets.

Define “analogous relative to paired indices” forx andy in a structure sort with

fieldsf 0,...f n:

(47) AnaP (x, y, xPtrs, yPtrs) ⇔ (
AnaP (x.f 0, y.f 0, xPtrs, yPtrs)

∧ ...

∧ AnaP (x.f n, y.f n, xPtrs, yPtrs)

)

Define “analogous relative to paired indices” forx andy in an array sortSexp[] :

(48) AnaP (x, y, xPtrs, yPtrs) ⇔ (

len(x)=len(y)

∧ (∀i:integer) (0²i<len(x) ⇒
AnaP (x[i], y[i], xPtrs, yPtrs)

)

)

Define “analogous relative to paired indices” forx andy in a set sortSexp{} :

(49) AnaP (x, y, xPtrs, yPtrs) ⇔ (

(∀u:Sexp)(u ∈x ⇒
(∃v:Sexp)(v ∈y ∧ AnaP (u, v, xPtrs, YPtrs))

)

∧ (∀v:Sexp)(v ∈y ⇒
(∃u:Sexp)(u ∈x ∧ AnaP (u, v, xPtrs, YPtrs))

)

)

www.manaraa.com

38

If a pair of sets are analogous relative to paired indices, then there is a

bijective mapping between the sets. The indices match elements from the two sets

according to shared index subscripts. Two data structure instances are isomorphic

if there exist a pair of indices with respect to which they are analogous.

Define data structure isomorphism, for each data structure sort:

(50) x::y ⇔ (∃xPtrs, yPtrs: addr[])(

AnaP (x, y, xPtrs, yPtrs)

)

Note that analogous pointers fromx andy must simultaneously (1)

equalNULL, (2) reference analogous parts ofx andy, or (3) fail to reference any

part ofx andy.

This section has defined three different binary predicates for comparing

data structures. They are summarized in Figure 3, below. The arrows indicate the

strength of these predicates.

Figure 3: Different relationships between data structures x and y.

Note that data structure isomorphism isnot logically stronger than data

equality. If a pair of data structure instances have embedded pointers, data equality

requires analogous pointers to be equal, while isomorphism requires these pointers

to reference analogous parts of their respective data structure instances. Strict

equality is, of course, stronger than both.

2.7 Functions that Modify Composite
Values

The functions described in Section 2.3 for data structures decompose

the composite sorts, that is, they return pieces of a composite value. The set

functions described there are the usual ones for combining sets. Functions that

x≅y

x=y x::y

Strict equality.

Data equality:
Data values are equal.

Data structure isomorphism:
Non-pointer data is equal, and embedded
pointers reference analogous parts.

www.manaraa.com

39

generate data structure and set instances by modifying parts of existing data

structure and set instances are very important to programming with the logic.

These functions are described below.

Let A, i , andx be terms whose sorts areSexp[] , integer , andSexp ,

whereSexp is an arbitrary data structure sort. The array valued function below

replaces the data of an array element:

Function The result is ...

A{[i] = x} A , with the data of its i-th element replaced byx .

The structure-valued function defined below replaces a field. LetR be a

structure term with a fieldf , whose sort isFSort , and letx be a term of sortFSort .

The notation for replacing a field is shown below.

Function The result is ...

R{f = x} R , with the fieldf replaced byx .

Like all functions, those above can be chained. Thus,A{[0]=1}{[1]=2}

is an array that has 1 and 2 as its first two elements, and with all other elements

identical to those ofA. Again, notation can be abused to make it easier to write

these chained functions, and to move the syntax closer to C. First, adjacent right

and left curly brackets,}{ , can be replaced with a semi-colon. The term above is

then writtenA{[0]=1; [1]=2} . Second, the left curly brace can be move left past

indices, set elements, and field names, with dots inserted where needed to delimit

field names. Thus,A[0]{color='r'} can be writtenA{[0].color='r'} . These

short-cuts are most useful when combined. Consider, for example, the term below,

which replaces an element in an array in a structure, and then sets an index to that

array element, in the same structure.

A {

list [j] = x;

mostRecent = j;

}

The next axiom defines the array replace function. The variablesi andj

areinteger , and the other free variables belong to the concerned array sort. The

results of the function are not defined for array indices that lie outside the array’s

www.manaraa.com

40

range. The functiona{[j]=x} creates a value that is identical toa, except that the

data value of the j-th element equalsx.

For each array sort:

(51) b≅a{[j]=x} ⇔ (

j<len(a) ⇒ (

len(a)=len(b)

∧ (∀i)((0<i²len(a) ∧ i­j) ⇒ a[i]=b[j])

∧ &a[j]=&b[j] ∧ b[j]=x

)

)

The two axioms below define the function that replaces a field in a

structure. The variablesa andb belong to a structure sort,f is a field in the sort,

g0,...gn are the other fields, andx is a variable that has the same sort asf . As above,

b is defined as strictly equal toa, except for the fieldf , which becomes data equal

to x. (If f is a data structure rather than a set, then it retains its address value. The

first axiom handles the case wheref is a data structure, the second, wheref is a

set.)

For each structure sort with fieldsf andg0,...gn, wheref is not a set.

(52) b≅a{f=x} ⇔ (

a.g 0=b.g 0 ∧ ... ∧ a.g n=b.g n

∧ &a.f=&b.f ∧ b.f=x

)

For each structure sort with fieldsf andg0,...gn, wheref is a set.

(53) b≅a{f=x} ⇔ (

a.g 0=b.g 0 ∧ ... ∧ a.g n=b.g n

∧ b.f=x

)

There are some more notational shortcuts that need to be discussed.

First, whenever a component appears on the right-hand side of an equal sign in the

above functions, it refers to the value of the term to which the function applies.

Consider the term below.

A { list[k] = list[i] }

{ list[l] = list[j] }

www.manaraa.com

41

The termlist[i] is short forA.list[i] . The termlist[j] is short for

A{list[k]=list[i]}.list[j] . Thus, ifj=k , the result of the two function

applications will be a term wherelist[l]=list[k] . Another way of viewing this

is that the modifications are applied in the order listed. Note that the convention

about replacing}{ with ; makes the term above equivalent to the term below.

A { list[k] = list[i];

list[l] = list[j] }

Modifying Sets

With sets, it is convenient to use notation like that for the array and

structure functions to denote replacing an element. Thus,S{e=x} is taken to be

(S–{e}) ∪{x} . This is extended to the fields or array elements ofe, so that

S{e.f=x} is taken to be(S–{e}) ∪{e{f=x}} . In the term{e{f=x}} , notice that the

outer brackets indicate set construction, and the inner brackets indicate the

application of a replace function.

As with structures, several elements of a set are often modified in the

same term. Because of this, it is useful to define notation for adding and removing

elements from sets.

Function Meaning

A{«x} A ∪{x}

A{»x} A −{x}

The conventions regarding the use of curly braces that apply to

structure and array updates carry over to the above notation for sets. This results in

a more terse and intuitive notation. Consider the term below.

A {

« x;

y.f=g;

» z;

}

This can be read: “the setA, with the elementx added, the fieldf of the

elementy replaced byg, and the elementz removed.”

www.manaraa.com

42

The use of curly braces for both set construction — e.g.,A∪{x} — and

to indicate function application — e.g.,A{«x} — is an unfortunate compromise in

the notation. It is ameliorated by the fact that set construction is almost never used.

The replacement of}{ by ; is only allowed when the curly braces are used for

function application. When the curly braces are not needed to associate several

function applications, they can be omitted for the set function s above. For

example,A{«x} can be abbreviated toA«x.

2.8 Characterizing Memory States

The logic is intended to characterize and support reasoning about data

structures. There are two contexts in which programmers typically reason about

data structures. First, they can reason about data structures generally, without

regard to any particular memory state. Second, they can reason about data

structures with reference to a particular memory state. The logic described so far

reflects this first context. The intended model contains as its “domain of discourse”

all data structure instances that reside inany memory state atany time. This model

contains too many values to characterize a fixed memory state. For example, for an

addressa , the twoint values, <a , 3> and <a , 4> are both in the intended model.

Given a fixed memory state, the value at the addressa could be 3 or 4, but not both.

When reasoning about a fixed memory state, we would like to be able to conclude

from the fact that twoint values have the same address, that therefore they have

the same value.

An axiom is given below that, when added to the logic, characterizes a

fixed memory state. This axiom is called thespecific state axiom. It is not

considered part of the logic, except when expressly noted.

Specific State Axiom: Forx andy with data structure sorts:

(54) &x=&y ⇔ InitialPartOf (x, y)

Note that the above axiom constrains models of the logic. As noted

above, the intended model of the logic does not satisfy the specific state axiom,

because it includes too many data structure instances.

www.manaraa.com

43

Given a model of a sorted logic, a submodel is an interpretation of the

logic (1) that has for each sort a domain that is a subset of the sort’s domain in the

larger model, (2) that preserves the interpretation of constant, function, and

predicate symbols, and (3) that makes true all theorems. For the logic presented

here, (1) and (2) imply (3), because none of the axioms present existential

requirements on the domains.

Memory states are identified withspecific state submodels of the

intended model. Aspecific state submodel is any finite set of mutually disjoint data

structure instances augmented with (1) all the components of these instances, to

make the domains closed under the decomposition functions, and (2) all valid

finite compositions of these instances. The original finite set of data structure

instances is called the basis. Specific state submodels satisfy the specific state

axiom because the initial set of data structure instances are mutually disjoint, so

any common addresses must come from data structure composition.

Consider a memory state as (1) any finite setA of addresses, called the

address space, and (2) acontent functionv that maps this set into the discriminated

union of the base sorts. Any such memory state generates a unique specific state

submodel that has as its basis all values <a , v (a)>. Conversely, any specific state

submodel can be mapped into a unique memory state. A specific state submodel

assigns through its primitive data structure instances a unique data valuex to each

address valuea . The set of addresses in the primitive data structure instances are

the address space, and this assignment is the mappingv . Figure 4 shows this

mapping for a specific state submodel that has one data structure instance as its

basis.

Figure 4: A specific state submodel whose basis has one data structure
instance.

<a 0, <<a 0, a 1>, {<a 1, 2.3>, <a 2, 3.0>}, <a 3, NULL>>>

1 2 3 4 5 6 7 8 9

4 2.3 3.00

www.manaraa.com

44

The above discussion shows that there is an equivalence between (1)

memory states as mappings from finite address spaces to values in the base sorts,

(2) finite sets of mutually disjoint data structure instances, and (3) a particular

class of submodels of the intended model of the logic. This equivalence is used in

discussing the procedural semantics of programs, in Chapter 5.

www.manaraa.com

45

3. Programming with the Logic

A logic alone does not provide the programmer enough expressive

power to describe a computation. Even a logic programming language such as

Prolog, in which a program is a set of clauses in Horn clause logic, adds more

support for programming than might appear at first glance. Prolog relies on a

particular search algorithm that attempts to satisfy goals according to their textual

order (something that is logically irrelevant), and provides the programmer with a

variety of non-logical constructs for modifying the program’s execution, such as! ,

assert() , andretract() . These constructs are syntactically treated as predicate

symbols, but semantically they act to modify a Prolog program’s execution rather

than to express a logical assertion.

Kowalski [33], discussing the move from procedural languages to

logical languages, understood thatsomething must be added to logic in order to

create programs when he wrote:

Algorithm = Logic + Control

One goal in the design of Galois was to permit the programmer to add as

little something as possible to create data structure programs. In thinking about

this, the Hoare calculus[25] became an inspiration. In it, the behavior of a program

P is expressed using a precondition and postcondition expressed in logic:

{Precondition} P {Postcondition}

This can be taken as a form of program specification. A programming

environment that generates code from this specification would generate the

programP given the precondition and postcondition. The logic of the previous

chapter provides the expressive power necessary to write preconditions and

postconditions for data structure programs. Galois adds to the logic the ability to

specify a program in a form very similar to the Hoare calculus. Thus:

Galois = Logic (Chapter 2) + Program Specification (Chapter 3)

www.manaraa.com

46

The compilation process turns a program specification into an

executable procedure (C function). In Galois, the postcondition specified for a

program is always a predicate defined in the logic. The desired program is said to

realize its predicate and tosatisfy its specification.

The design of Galois reflects the philosophical principle that, in turning

logic to the purpose of programming, the syntax and semantics of the underlying

logic should not be sullied. Predicates are defined in a purely logical framework,

and are then used to specify programs. Program specification does not affect the

logical meaning of the predicates. In this regard, Galois provides a more pure form

of logic programming than Prolog. As noted above, Prolog relies on programming

constructs that are made to syntactically appear as part of the underlying logic,

even though they have no meaning in the logic, and these affect the meaning of the

clauses in which they appear in subtle ways.

Section 3.1, immediately following, takes a closer look at program

specification. The subsequent two sections discuss how Galois programs are used

in applications and how they are prepared. Section 3.4 gives the syntax and

explains elements that were not previously described. Section 3.5 gives some

simple examples and provides further discussion. Section 3.6 discusses pointers

and memory management. It describes how programming in Galois can eliminate

the common programming errors related to these. Section 3.7 states some

restrictions on writing programs in the logic.

3.1 Introduction to Program Specification

As adumbrated above, a Galois specification for a program P resembles

an assertion in the Hoare calculus: {precondition} P {postcondition}. The Hoare

calculus does not express termination properties, nor some other execution

properties that are described below. In Galois,execution properties are appended

to the end of a program specification. The example below shows a Galois

specification for a program that searches a sorted list. (The preconditions and

postconditions for this program are defined in Section 3.5, below.)

www.manaraa.com

47

{AscPts (List)}

doAscPtsSearch (in List, in Key, in Prev, out Here)

{AscPtsSearch} terminates.

This example shows the five pieces of information in a program

specification. These are:

(1) Program name: doAscPtrSearch . This is used to identify the program. Often,

a program that realizes the predicateFoo is nameddoFoo .

(2) Argument modes: in & out . The first three arguments to the program are input

arguments, while the last is an output argument. In the Hoare calculus, the text of

a program determines variable use. Because Galois generates a program from the

specification, the specification must describe the use of the program’s arguments.

(3) Precondition: AscPts(InList) . As in the Hoare calculus, the precondition is

a logical formula that must hold on entry to the program. The free variables in the

precondition must be a subset of the input arguments to the program.

(4) Postcondition: AscPtsSearch . The postcondition is the name of a predicate

that has the same arguments as the desired program. The generated program,

when executed, attempts to make the postcondition true. If it does so, itsucceeds,

and returns status indicating success. (Program execution is discussed in more

detail below.)

(5) Execution properties: terminates . This requires the specified program to

terminate even if, for a particular execution, there are no values for its output

arguments that satisfy the postcondition.

An argument’smode describes how the argument is used when the

program is executed. There are three argument modes:

in A pure input argument passes a value to the program when the

program is executed. Its value is not changed by execution.

inx A consumed input argument passes a value to the program, and the

value’s memory is consumed (deallocated) by the program’s

execution. A consumed input argument must have an addressed sort.

out An output argument returns a value from the program.

The pure input arguments and the consumed input arguments are

collectively called theinput arguments, and this set is writtenI . A set of values

bound to the input arguments is called aninput tuple. The pure input arguments

www.manaraa.com

48

and the output arguments are called theresult arguments, and this set is writtenQ .

A set of values bound to the result arguments is called aresult tuple. The set of

consumed input arguments and the set of output arguments are writtenD andO ,

and values bound to these sets of arguments are called aconsumed input tuple and

output tuple. Notice thatI andQ provide complete information about the

arguments’ modes, since the pure input arguments areI –Q , the consumed input

arguments areI ∩Q , and the output arguments areQ –I .

Input values must be bound at the start of the program’s execution, and

result values are bound on its return. A result tuple isvalid for a particular

execution if it equals the input tuple on their common arguments and together with

the input tuple it satisfies the program’s predicate, i.e., the postcondition. A

program performs a destructive update by creating output values from consumed

input values.

 The programmer can specify several kinds of execution properties for a

program. A program is:

sound if it generates only valid output tuples.

effective if it generatesone output tuple, whenever a valid output tuple exists.

complete if it generatesall valid output tuples (up to data structure

isomorphism).

terminates if it never enters an endless loop.

It is assumed that the programmer always desires a sound

implementation. In addition, the programmer can specify that the program is

effective or complete, but not both. These execution properties are defined

formally in Chapter 5.

3.2 Using Galois Programs

Programs created through Galois are linked into and invoked by an

application written in a traditional programming language. Chapter 7 shows code

generation targeting C. Each Galois program becomes a C function. Though this

www.manaraa.com

49

work uses C as the example target language, there is nothing that prevents code

generation in Pascal, Ada, or other similar languages.

When used in an application, Galois programs are guaranteed to return

only output values that satisfy their postcondition, providing the precondition

holds when the Galois program is executed and providing the application abides by

conventions for data representation and manipulation. (This is discussed some

below and in more detail in Chapter 5.) Thus, Galois provides a way to build

verified component libraries for manipulating data structures that are used in

applications written in traditional languages.

A Galois program realizes a predicate. A new predicate is often defined

in terms of existing predicates. When such a predicate is used as a postcondition in

a program specification, the compiler builds a program that invokes programs that

were previously compiled for the component predicates. (See Figure 1, below.)

The programmer does not have to worry about whether these program’s

preconditions hold or whether the calling program abides by the conventions for

data representation and manipulation. When the compiler constructs a Galois

program that calls other Galois programs, it guarantees these things. In this

fashion, Galois can be used to build verified component libraries that deal with

complex and intricate data structures, and the application programmer need only

worry about correctly using the programs that form the interface.

Figure 1: The use of Galois programs.

Application

pInsertpSearch

pReplace pNew

Program

pMerge

Merge (...) ⇔ (

pNew

pInsert
Galois

Procedure
Library

Definition of Merge predicate:

 ... ∧ Insert ...
)

The compiler uses the
pInsert program to build

thepMerge program.
Compiler

www.manaraa.com

50

For Galois programs targeted to C, there is a close correspondence

between the logical sorts and C types. Values in the sortsaddr , char , int , and

float are represented by C values with type(void *) 1, char , int 2, andfloat 3.

Arrays are represented as C arrays. A value in a structured sort is represented by

the corresponding C structure, with set-valued fields omitted. Each element of a

set is represented by a C structure.

When a Galois program executes, it deallocates the memory occupied

by its consumed input arguments and allocates memory for its output arguments.

This memory management takes place in the C heap using standard C library

functions. Thus, any value the application passes as a consumed input to a Galois

program must have been allocated on the heap. (The easy way for the application

programmer to guarantee this is to pass for consumption only values that have

been produced by other Galois programs.)

Data representation is not an issue for Prolog, LDL, or most other logic

languages because they are self-contained and each implementation can choose its

own data representation. Galois is meant to work with data structures that are

understood by C programs (and C programmers!).

3.3 Program Preparation

Ideally, the Galois compiler would be able to accept any predicate

definition and any program specification and produce a program that satisfies the

specification. The compilation process is not so simple, for several reasons. Most

1 This work uses C as described in [29]. It includes thevoid* type.
2 The Cint type has an obvious failing as a representation of the logicalint : the former

has a finite domain while the latter conceptually holds any integer value. This problem is
ignored in this work. A clean implementation requires use of anint type that is
arbitrary precision, or that at least raises an exception when the implemented domain is
exceeded.

3 The float sort in the logic is assumed to have axioms that reflect the behavior of the C
float type. (This is not practical for theint sort, because true integers are needed in
the logic for induction proofs.)

www.manaraa.com

51

glaringly, some specifications are impossible to satisfy. Consider, for example, a

predicate that defines whether a universal Turing machine halts and a specification

that demands a program that both realizes this predicate and terminates on all

inputs. Or consider a specification for a program that must find an unreachable

piece of data. It is to Galois’s credit that the programmer can logically define the

concerned predicates, but will discover during the compilation process that the

desired programs cannot be created. (This is far better than what happens with a

traditional language, which permits the programmer to build a program that

executes, though incorrectly, leading the programmer to work at fixing the

program.)

Within the realm of what is computable, more practical concerns arise.

The programmer can define a predicate that can be realized by a program, but that

is too abstractly defined to permit immediate compilation. In such a case, the

programmer will have to define a logically equivalent predicate that presents the

compiler an easier task. (This is discussed more in Chapter 5.)

As discussed above, the compiler will guarantee that any Galois

program composed from other Galois programs will guarantee the preconditions

of these. This requires the compiler to analyze the preconditions of included

programs relative to the context in which they are used and the precondition of the

program being compiled. The procedural calculus in Chapter 5 shows how this

analysis is done, yielding aprerequisite assertion which, if true, validates the

compiled program. The compiler relies on the programmer using theorem proving

tools to verify the prerequisite assertion. (See Figure 1.) Theorem proving is

beyond the scope of this work; we assume that this task is practical. (As

importantly, Galois seems to increase program reliability even when the

programmer verifies the prerequisite assertion by inspection. The prerequisite

assertion makes explicit the assumptions that are made by program execution,

which assumptions are often overlooked in more traditional programming. Patrick

Ray [58] investigates the use of Galois in the absence of a theorem prover.)

www.manaraa.com

52

Figure 2: Interaction between compiler & theorem prover.

Figure 1 shows the data and control flows between the compiler, the

theorem prover, and the various data elements. The process of creating a Galois

program is outlined below. Each step explains part of Figure 1.

(1) The programmer defines a predicate and specifies a desired program. The

predicate definition adds to the set of predicate definitions, and the program

specification is the primary input to the compiler.

(2) The compiler generates a composition for the program and produces the

prerequisite assertion that validates it. If the compiler fails, it displays the failure

points to the programmer so that the programmer can modify the program

specification or predicate definition. (This step is detailed in Chapter 5.)

(3) The prerequisite assertion is verified. The theorem prover may use and update a

theorem library concerning predicates during this step. If the prerequisite

assertion cannot be verified, then the programmer must revise the program

specification (perhaps strengthening the precondition) or the predicate definition

(adding run-time checks).

(4) Once the prerequisite assertion is verified, the compiler generates code in the

target language and adds the procedure to the procedure library.

This process is a more complex route to executable code from logic

than exemplified in Prolog, where any syntactically correct program executes. The

greater preparatory effort required by Galois buys three improvements over

Prolog.Correctness: The programmer can select, and the compiler verify, very

strong execution properties. For example, an effective or complete Galois program

Galois
Compiler

program
specification

procedure
library

theorem
library

predicate
definitions

Theorem
Prover

prerequisite assertion

generated
program

OK code generation

1

2

3

4

2

www.manaraa.com

53

never fails to give a tuple that satisfies its predicate, when one exists. In contrast,

Prolog programs without control constructs are only sound, and with control

constructs they can give wrong answers.Expressiveness: Galois programs can

express and manipulate pointer-based data structures.Efficiency: Galois programs

execute efficiently and are capable of destructively updating pointer-based data

structures.

3.4 The Elements of Galois

At the top level, there are three elements of the programming language:

predicate definitions, sort definitions, and program specifications. Predicate

definitions are made in the logic, as described in Chapter 2. Sort definitions merely

provide a way to attach a name to sort expressions for convenient use. Program

specifications play the role discussed in the previous sections.

These are the only elements of the language. Their description below

includes a BNF grammar. Five non-terminals of this grammar reference syntactic

parts of the logic in Chapter 2:<sortExpr> is a sort expression,<identifier> is

a sort, predicate, or variable name,<arg> is an argument declaration,<formula> is

a formula, and<pliteral> is a positive literal. These non-terminals are not

defined in the BNF grammar below. (All other non-terminals begin with a capital

letter.)

The Predicate Definition

A predicate definition introduces a new predicate name and a recursive

definition for the predicate. It is a formula in the logic with the following form:

<PredDef> := <PredName> (<PredArgList>) ⇔ (<Body>)

<PredArgList> := | <arg> | <arg> , <PredArgList>

<PredName> := <identif ier>

<Body> := <formula>

That is, a predicate definition is a formula of the form

www.manaraa.com

54

p(a 0,...a n) ⇔ Φ, where each argumenta i is a variable with a sort declaration as

described in Chapter 2. Thebody of a predicate definition is a formula in the logic,

Φ, whose free variables are the predicate’s arguments. The body may include uses

of the predicate being defined,p. To ease parsing, the body must be enclosed in

parentheses. Because a predicate definition is just a formula in the logic, as

described in Chapter 2, its syntax and meaning are not discussed further here.

The Sort Definition

A sort definition is very much like a Ctypedef . It associates a name

with one of the logic’s sorts, so that the name can be used as a sort declaration for

an argument or variable. The format of a sort definition is:

<SortDef> := sortdef <sortExpr> <SortName>;

<SortName> := <identif ier>

Sort expressions are described in Chapter 2. Two examples of sort

definitions follow.

sortdef struct {Next: addr; X: f loat; Y: f loat;} Point;

sortdef struct {

addr Head;

Point Pts{};

} PointList;

The first sort definition above describes a structured sort, namedPoint ,

that has floating point fieldsX andY. The second sort is also a structured sort,

namedPointList , that contains a set ofPoint elements and an address (intended

to reference the first point.) As in Chapter 2, a small abuse of notation allows a

syntax that is more like C: the square and curly brackets that specify arrays and

sets can follow a field name or sort name.

The Program Specification

The programmer specifies a program in aprogram specification. In

addition to the predicate that the program realizes, the programmer must provide a

www.manaraa.com

55

name, argument modes, precondition, and execution properties. The syntax for a

program definition is given below.

<ProgSpec> :=
{<Pre>} <ProgName> (<MAList>) {<PredName>} <PropList>.

<ProgName> := <identif ier>

<PredName> := <identif ier>

<Pre> := { <formula> }

<MAList> := | <ModeAssign> | <ModeAssign> , <MAList>

<ModeAssign> := <Mode> <ArgName>

<Mode> := in | inx | out

<ArgName> := <identif ier>

<PropList> := | <Property> | <Property> , <PropList>

<Property> := sound | effective | complete | terminates

Before further explanation, an example might be helpful. The program

declaration below says that the programfoo generates all values ofy that satisfy

the predicatep for a given value ofx , providing thatx satisfies the preconditionq

whenfoo is invoked.

{q(x)} foo (in x, out y) {p} complete.

There are several syntactic rules that apply to program definitions, all of

which are intuitive. The arguments given the program must correspond in name

and place to those for the predicate it realizes. Only arguments that have a structure

or array sort can have the modeinx . The free variables of the precondition must be

a subset of the program’s input arguments.

The same predicate can be used to define several programs. One

program might calculate one set of output arguments, and a second might calculate

a different set of output arguments, while both realize the same logical predicate.

Some predicates are not realized by any program. They serve as preconditions, or

to define other predicates.

The Module and Miscellaneous Syntax

A module is a coherent collection of predicate definitions, sort

www.manaraa.com

56

definitions, and program definitions. The scope of a sort definition is its module;

that is, the defined sort name can be used in any predicate definition in the module,

but does not apply outside the module. Program and predicate definitions can use

predicates defined in the module. (Nonetheless, a recursive cycle can only be a

single loop. Predicatep is said to bedefined in terms ofr if the body ofp refers to

r , or refers to a predicateq that is defined in terms ofr . The predicatep can be

defined in terms of itself, butp cannot be defined in terms of anyother predicate

that is defined in terms ofp.)

While not shown in the BNF grammar, Galois permits comments in the

style of C++. It also allows integer constants for the module to be parameterized in

the style of C++. For example, the line below definesN to be20 .

int const N=20;

Modules are entirely independent of one another. Thus, the names in

one module never collide with the names in another module, nor can definitions in

one module refer to predicates or sorts defined in another module. Each module

has its own procedure library and theorem library. This organization and name

scoping is not conducive to programming in the large, but it suffices for the

purposes of this work.

3.5 Examples and Discussion

Typically, some predicates in a module serve only to define a data

structure type. For example, the predicate below defines an ordered point list. This

data structure type is a linked list of points ordered on their x-value. (See part A of

Figure 3.) It uses thePointList sort defined in the previous section.

AscPts (Ex: PointList) ⇔ (

Ex.Head=NULL ⇒ Ex.Pts=EMPTY

∇ (∃First: Point)(

First ∈Ex.Pts ∧ &First=Ex.Head

∧ First.Next­NULL ⇒ (∃Scnd: Point)(

Scnd∈Ex.Pts ∧ &Scnd=First.Next ∧ Scnd.X>First.X

www.manaraa.com

57

)

∧ AscPts (Ex { Head = First.Next;

Pts = Pts{»First} }

)

)

ThePointList sort is a structure that contains a pointer,Head, together

with a set,Pts . The elements ofPts form a singly linked list, with elements

increasing inX value down the list.

All the elements of aPointList data structure can be reached by

chasing theNext pointers. (See part A of Figure 3.) The following assertion, which

is provable in the logic from the above definition, expresses this fact.

AscPts (x) ⇒ ((z ∈x.Pts) ⇒ RPartOf (z, x))

One canlogically define data structures where it is impossible to reach

all pieces of the data structure. Consider, for example, a linked list with pointers

running backwards. (See part B of Figure 3.) Practically, this is a terrible blunder.

Such a blunder is revealed when the programmer tries to compile a program

involving this data structure. The compiler will be unable to generate code that

does anything useful. If a program is specified that requires accessing unreachable

elements, the compiler will either issue errors, or it will ask the theorem prover or

programmer to verify assertions that are false.

Figure 3: Examples of data structures.

Next
X
Y

Next
X
Y

Next
X
Y

NULL

Next
X
Y

Next
X
Y

Next
X
Y

NULL

A: The AscPts data structure.

B: A backward linked list, a very stupid data structure.

Head

Head

ascendingX values

www.manaraa.com

58

An alternate definition of theAscPts data structure type is shown

below. It is more terse than the previous definition. It asserts the following

invariant: (1) if the point set is not empty, there is one point that has a nullNext

pointer, (2) all elements of the point set are reachable, and (3) theNext pointer, if

notNULL, always points to something with a greaterX value. This definition might

be preferred for proving assertions about the data structure type or about programs

that use it. It is provably equivalent to the former definition.

AscPts (Ex: PointList) ⇔ (// Alternate def inition

Ex.Head­NULL ⇒ (∃pt ∈Ex.Pts)(pt.Next=NULL)

∧ (∀pt ∈Ex.Pts)(

RPartOf(pt, Ex)

∧ pt.Next­NULL ⇒
(∃pt2 ∈Ex.Pts)(pt.Next=&pt2 ∧ pt.X<pt2.X)

)

)

The formula above makes use of a frequent abbreviation. Given a term

t whose sort isSexp{} , the formulae(∀x:Sexp)(x ∈t ...) and

(∃x:Sexp)(x ∈t ...) are ubiquitous. These are abbreviated to(∀x∈t) and

(∃x∈t) .

The next predicate defines a search of an ordered point list. It is the

body of a program that given a list (InL), a key value (Key), and a default address

(Prev), returns the address (Here) of the point furthest down the list whoseX value

is less than or equal to the key value, or the default address if all points in the list

haveX values greater than the key value. (The program definition is given later.)

AscPtsSearch

(InL: PointList, Key: f loat, Prev: addr, Here: addr) ⇔ (

InL. Head=NULL ⇒ Here=Prev

∇ (∃pt ∈InL.Pts)(

&pt=InL.Head

∧ (Key<pt.X ⇒ Here=Prev

∇ AscPtsSearch (InL {Head=pt.Next, Pts{»pt}},

Key, Here, &pt)

)

www.manaraa.com

59

)

)

The next predicate defines a relationship between (1) an ordered point

list, (2) a new point whose x-value is not in the first list, and (3) an ordered point

list that includes both the points from the first list and the new point. In short, it

defines the input-output relation for the operation that inserts into an ordered list. It

uses the search predicate.

AscPtsInsert

(InL: PointList, Pt: Point, OutL: PointList) ⇔ (

(∃New: Point, Here:addr)(

AscPtsSearch (InL, Pt.X, NULL, Here)

∧ Here=NULL

⇒ (New::Pt{Next=InL.Head} // Insert at head

∧ OutL::InL {Head=&New, Pts ≅Pts{«New}}

)

∇ (∃HPt ∈InL)(// Insert after HPt

Here = &HPt

∧ HPt.X ­ Pt.X // Fail if keys are equal

∧ New::Pt{Next=HPt.Next} // Copy ptr to New

∧ OutL::InL{Pts ≅Pts{«New; HPt.Next=&New}}

)

)

)

The predicate above has a structure almost identical to a list insert

operation written in C or Pascal. It can be given the following interpretation. “To

insert into an ordered point list, first search for the greatest existing point whose

key value is less than or equal to the new point. If no such point exists, insert the

new point at the head of the list. If the found point equals the new point in key

value, then the insert fails. Otherwise, insert the new point after the found point.”

Even though the program deals with pointer-based data structures and uses pointer

manipulations familiar to a C programmer, and even though the compiler will

generate the expected C code, the predicate definition is a formula in a first-order

logic. Assertions logically derived from the predicate definition will accurately

qualify the output tuples produced by the procedure.

www.manaraa.com

60

The following program specifications qualify the desired list search and

insert programs. In both cases, the precondition is merely that the input data

structure is an ordered list of points.

{AscPts (InL)}

doAscPtsSearch (in InL, in Key, in Prev, out Here)

{AscPtsSearch} effective, terminates.

{AscPts (InL)}

doAscPtsInsert (inx InL, in Pt, out OutL)

{AscPtsInsert} effective, terminates.

For the insert program, the mode for the input list specifies that it is

consumed, which is to say, it is destructively updated in producing the output list.

In the predicate definition forAscPtsInsert , note the use of data structure

isomorphism to define the output data structure (OutL) as equivalent to the input

data structure (InL) with some modifications applied. This technique will be used

throughout the examples. Chapter 6 describes how this is realized as a destructive

update.

The same predicate could be used in a program definition that preserves

the input list, copying it to produce the output list. The two programs would realize

the same logical predicates, but their program specifications would impose

different argument modes.

When the compiler is generating code for a program, and the defining

predicate references other predicates, the compiler searches the procedure library

for previously compiled programs that realize these other predicates. The compiler

searches for a program whose argument modes and execution properties are useful

in generating code for the program on which it is currently working. In particular,

the compiler insures that consumed values are not used after they are consumed.

Thus, the compiler guarantees that data structure allocation, use, and destruction

are properly sequenced. (At the interface between the application and Galois

programs, it remains the programmer’s responsibility to insure that the application

abides by conventions regarding data manipulation. These are described in detail

in Section 5.4.)

www.manaraa.com

61

3.6 Pointers, Sets, and Memory
Management

Because a set value in the logic is represented in C by an arbitrary

collection of disjoint C data structures, it is impossible to find an element of a set

unless there is a pointer to it. Pointers into sets are chased by formulae such as the

one below.

(∃x∈Sexp)(&x=pt ∧ ...)

The variablept is the pointer that is dereferenced, and the elided

portion of the formula makes use of the referenced element.

The astute reader may ask: since there is no explicit structuring of

elements in a set, except for the internal references that are defined by the

programmer, what does it mean — operationally — to add elements to or remove

elements from sets? The answer is that these things describe when memory is

allocated and released.

Normally, when the compiler generates code for an existential formula,

it generates code that (1) allocates space for the existentially quantified variable

and gives it a value, and that then (2) deallocates the memory occupied by the

variable at the end of the existential scope. This second step is omitted if the

existentially quantified variable is added to a set that is part of an output argument.

Consider theAscPtsInsert predicate from Section 3.5. The variableNew is

allocated, assigned a value, and then deallocated unless it is added to the set

InL.Pts and returned in the guise ofOutL . Conversely, a predicate that deleted an

element from the ordered linked list would eject an element from a set, and the

generated code would appropriately deallocate the memory that had been allocated

for it.

In writing programs, the programmer does not have to think about

memory allocation and deallocation. Instead, the task is to define data structure

invariants that have no lost parts or dangling pointers, and to define predicates for

input-output relationships that preserve these invariants. A memory leak occurs

www.manaraa.com

62

when a program creates a data structure with lost parts. An erroneous memory

deallocation occurs when a program creates a data structure with a dangling

pointer. In the example for the ordered point list, the programmer would want to

prove, in the logic, the following two assertions.

• AscPts(x) ⇒ Navigable (x) ∧ ~HasDangles (x)

• (AscPts(InL) ∧ AscPtsInsert(InL, Pt, OutL))

⇒ AscPts(OutL)

If these assertions are true, then the compiler will generate code that

allocates and deallocates memory correctly. The same is true for arbitrarily

complex data structures. If the programmer proves (1) that the data structure is

navigable and has no dangling pointers and (2) that all programs concerned

generate outputs that satisfy the data structure’s invariant, then memory leaks and

dangling pointers are eliminated.

Regardless of whether the programmer does (1) and (2), the compiler

will not generate code that chases dangling pointers. Wherever a pointer is chased,

the compiler generates an assertion that asks the programmer to prove from the

preconditions of the program and “what the program has made true so far” that the

pointer dereference is valid. This assertion is made part of the prerequisite

assertion that must be verified before the compiler produces code for the specified

program. (The notion of “what the program has made true so far” is made concrete

in Section 6.5.)

Failure to allocate and deallocate memory correctly and chasing invalid

pointers are problems that plague C programming. These bugs are subtle, difficult

to track down, and often persist in software throughout its commercial life. Galois

gives these issues a formal expression, so that formal reasoning about them is

supported, and producing programs free of these bugs is reduced to verifying in a

first-order logic a set of assertions that are automatically generated.

www.manaraa.com

63

3.7 Restrictions on Use of the Logic for
Programs

As previously mentioned, the compiler will balk at some predicates,

even though they are syntactically correct. Chapter 1 briefly described how

programs whose predicates are expressed too abstractly must have their predicates

written more concretely in order for the compiler to successfully process them.

These limitations in using the logic are discussed below. (Chapter 5 and Chapter 7

provide more detailed explanation.) It is important to keep in mind that not every

predicate is intended to be realized by a program. For example, a predicate that

serves as a data structure invariant is useful in proofs and preconditions, even

though it is never realized by a program.

Syntactic Restrictions

To be realized by a program, a predicate that is recursively defined must

have recursion only at an even negation depth. This is formally defined in

Chapter 4. Roughly, this means that determining whether a tuple satisfies the

predicate cannot depend on determining that some other tuplefails to satisfy the

predicate.

A second restriction concerns universal quantification. A universally

quantified formula will compile only if it has the form(∀A)(θ⇒φ), θ is realized as

a complete procedure whose output variables areA , andφ has no output variables.

In short, universal quantification can be used only to iterate over a set of values

that are explicitly generated and to verify a condition on this set.

Context-Sensitive Restrictions

Pointers can be dereferenced only as discussed in the previous section.

Sets must be used, as described there, to specify the addition of pieces to or the

removal of pieces from a data structure instance.

www.manaraa.com

64

Primitive data structures (int , float , char , andaddr) can be

manipulated freely in the logic. But more complex data structures can be used only

in certain ways. A complex data structure instance is created in one of two ways.

First, a data structure instance is created and bound to a variable of the concerned

sort that is existentially quantified. This instance is valid within the quantifier’s

scope. Second, an output variable can be defined as an isomorphic copy of a data

structure instance, possibly modified by the data structure functions. The

concerned literal has the formy::x{...} , which can be read “y is an isomorphic

copy ofx , with the following modifications ...”. Ifx is destructively consumed, and

it is no longer needed in the program, then this literal acts to destructively updatex

and bind the result toy. Otherwise, the literal acts to perform a deep copy ofx ,

modify the result, and bind the modified instance toy.

The compiler cannot generate code that performs a deep copy of

arbitrary data structures. In general, if this is needed, the programmer must specify

a program that effectively realizes a predicater(x, y) , with x as an input variable

andy as an output variable, for allx in the concerned data structure class, such that

r(x, y) ⇒ x::y is a theorem of the logic. Such a program is called acopy

constructor. In essence, it tells the compiler how to copyx . A copy constructor is

also needed to deallocate a data structure instance, for example, when a data

structure instance is consumed by a program that does not recycle the consumed

instance in producing an output instance. (Deallocation can be viewed as copying

to the null device, which is why a copy constructor enables deallocation.) Memory

allocation and deallocation are discussed in more detail in Chapter 7.

A final restriction concerns input argument consumption. Programs that

potentially generate multiple output tuples, i.e., complete procedures that are not

functions, may not have consumed input arguments. The intuition behind this is

that the entire input tuple must survive until the last result tuple is produced.

www.manaraa.com

65

4. Relational Models of Logic

This chapter presents a declarative semantic for the logic, i.e., an

intended model. The first two sections reprise the relational algebra and show how

it can provide a semantic interpretation of the predicate calculus. This is old hat,

and the purpose is solely to prepare the way for what follows. The third section

shows how a logic and its model can be extended in a natural and minimal fashion

given recursive predicate definitions that satisfy certain syntactic constraints. The

expressive power of recursive predicate definitions are related to Horn clause

programs.

4.1 Review of Relational Algebra

This section reviews the relational algebra1 to acquaint the reader with

the notation that will be used here. The relational algebra builds on a collection of

domains, ¶0, ¶1, ¶2, ..., each of which has a denumerable set ofvalues, and a setV of

variables. Each variable x is assigned to a domain ¶(x). The variables assigned to a

domain ¶i are denotedV(¶i). (Variables are more commonly called attribute names or

column labels, but since they will correspond to variable symbols in the logic, the

former terminology is more convenient here.)

An assignment is an ordered pair whose first member is a variable and

whose second member is a value from its domain. An assignment with variable x

and value v is written x→v or v/x. (This latter notation is read “v replaces x.”) Two

assignments aredisjoint if they have different variables. A finite set of pairwise

disjoint assignments is called a tuple, and can be written {v0/x0,...vn/xn} or

{x 0→v0,...xn→vn}. The values v0,...vn need not be distinct.

Therelational signatureτ(t) of a tuple t is the set of variables to which

1 The relational algebra is described in many standard database texts, such as [30].

www.manaraa.com

66

it assigns values.Thus, the relational signature of {v0/x0,...vn/xn} is {x 0,...xn}.

Two tuples are disjoint if their relational signatures are disjoint as sets. The

maximal relation Mτ for a signatureτ is the set of all tuples that have the

signatureτ.

A relation R is a signatureτ(R) and a set of tuples all of which have the

signatureτ(R). In a slight abuse of notation, the same symbol is used for both the

relation and its set of tuples. (A relation cannot be defined as a set of tuples with

the same signature, since then the empty relation would have no signature. It will

be important that each signature has its own empty relation.) In database theory,

relations are sometimes required to be finite, but this restriction does not serve the

purpose of interpreting logic, and so it is not assumed in this work.

Column projection and subtraction are basic operations that apply to

both tuples and relations. One can view them as essentially tuple operations that

extend to relations by application to each member tuple (and by application to the

relation’s signature), or as essentially relational operations that apply to tuples

when these are viewed as relations with one member. They are defined below for

tuples, and their extension to relations is assumed.

πC (t) Tuple projection. Let C be a relational signature.πC (t) is the subset

of t such thatτ(πC (t))=C ∩τ(t), i.e., the assignments in t to those of its

variables that are in C.

t\D Column subtraction. D is a signature. t\D=π(τ(t)–D)(t).

This expositions will use several other operations of the relational

algebra. These are defined below.

s·t Tuple concatenation. If s and t are disjoint tuples, s·t assigns to x the

value a iff a/x∈ s or a/x∈ t. Note that columns are labeled rather

than ordered, so concatenation is commutative: s·t=t·s.

σi(R) Relational selection. This selects all tuples of R whose values equal

i in their common variables:σi(R) = { t | t∈R ∧ πτ(i)(t)=πτ(t)i }.

R Q Natural join. R Q = { t | (∃q)(∃r)(∃s)(t=q·r·s∧ r·s∈R ∧ q·s∈Q ∧
disjoint(τ(r),τ(q))) }. Note that the natural join is the cross product

when R and Q share no variables.

R/Q Relational divide. R/Q = { t | (∀u)(u∈Q ⇒ t·u∈ R) }.

www.manaraa.com

67

R+Q Relational union. If τ(R)=τ(Q), then R+Q=R∪Q.

R–Q Relational difference. R–Q={ t | t∈R ∧ (∀u)(u∈Q ⇒
πτ(R)(u)­πτ(Q)(t)) }. Note that this definition allows R and Q to have

different signatures, and it removes from R all tuples that are equal to

any tuple in Q modulo their common columns.

~R Relational complement. Mτ(R)–R.

The above description of the relational algebra leaves open the content

of the domains. A particular relational algebra fixes these objects.

4.2 Relational Interpretation of Logic

The next task is the definition of an interpretation for sorted, first-order

logic using the relational algebra. An interpretation of a logic L is a relational

algebraA and a denotation functionD that maps the syntactic elements of the logic

into the relational algebra. As is common, the application of the denotation

function to a formula or termx in the logic is written [x], rather thanD(x). An

interpretation of a sorted logic assigns to each sorts in the logic a domain ¶(s), to

each constantc a value [c] in the domain of its sort, and to each function symbolf

with signatures0,...sn → s f a function [f] from ¶(s0) × ... × ¶(sn) to ¶(s f). This

exposition departs from the usual trail at this point, and does something a little

different for predicates and formulae.

First, variable symbols in the logic are identified with variables in the

relational algebra; that is, to serve as an interpretation, a relational algebra must

have the same variables as the logic, and each variable’s sort (in the logic) must be

assigned to the variable’s domain (in the algebra). This gives rise to a natural

interpretation of terms in the logic. Given a termf(x 0,...x n) wherex0,...xn are

variables, the interpretation of this term is a function [f(x 0,...x n)] on tuples

whose signatures containρ={ x0,...xn}. For a tuple t withπρ(t)={ x0/v0,...xn/vn},

define [f(x 0,...x n)](t)=[f](v0,...vn). This definition is recursively applied to a

general termf(e 0,...e n) , wheree0,...en are subterms, by: [f(e 0,...e n)](t) =

[f]([e0](t),...[en](t)). Thus, given any terme in the logic with variables V(e), its

interpretation is a functionfrom any tuple that assigns values to the variables V(e)

www.manaraa.com

68

to a value in the domain ofe’s sort.

Each atomic formulap(e 0,...e n) of the logic is assigned to a relation

[p(e 0,...e n)] whose relational signature comprises the free variables of

p(e 0,...e n) , that is,τ([p(e 0,...e n))])=V(p(e 0,...e n)). Relations assigned to

different atomic formulae with the same predicate symbol must be equivalent

modulo the calculation of values for their arguments. This is formally expressed by

the constraint below. This requirement uniquely determines the relation assigned

to an atomic formulap(e 0,...e n) given (1) the relation assigned top(e 0,...e n)

wheree0,...e n are variables, and (2) the denotations for terms.

Consistency of relations assigned to atomic formulae:

Given that bothp(e 0,...e n) andp(x 0,...x n) are well-formed formulae,

then t∈ [p(e 0,...e n)] ⇔ {([e0](t))/x0,...([en](t))/xn} ∈ [p(x 0,...x n)].

An interpretation as defined above assigns semantic structures to

variables and formulae. The usual notion instead assigns semantic structures to

predicate symbols. (Both notions identically treat constants, functions, and terms.)

The table below summarizes what has been done so far.

the logical element ... is assigned byD to the element ofA ...

s a sort ¶(s), a domain

x a variable symbol x , a variable (column label)

f a function symbol [f], function on appropriate domains

e a term [e], a function on tuples whose relational signature
includes the variables of e

p(..) an atomic formula [p(..)], a relation whose signature is V(p(..))

The final step assigns a relation to every well-formed formula in the

logic. The boolean constant False is assigned the empty relation with an empty

signature, writtenF. The boolean constant True is assigned the relation with an

empty signature that contains one (empty) tuple, writtenT. The important

properties of these relations from the algebraic viewpoint is thatF is a zero andT

an identity of the relational join; that is, for any relation R,F×R={}= F and

T×R=R. The relations assigned to arbitrary formulae are calculated from those

assigned to atomic formulae according to the rules below.

www.manaraa.com

69

Calculate ... by ... with signature ...

[False] = F {}

[True] = T {}

[∼ϕ] = ~[ϕ] V(ϕ)

[ϕ ∧ ξ] = [ϕ] [ξ] V(ϕ) ∪ V(ξ)

[(∀x) ϕ] = [ϕ] / δ(x) V(ϕ) – {x}

[(∃x) ϕ] = [ϕ] \ {x} V(ϕ) – {x}

It is trivially verified that the rules for the two quantifiers satisfy the

equality [(∃x)(ϕ)] = [~(∀x)~ϕ(x)], and that conjunction and negation under

quantification behave as expected. The other logical participles (⇒, ⇔, and∨) are

handled by rewriting them in terms of conjunction and negation. A tuple t is said to

satisfy a formulaϕ under an interpretation precisely when t is in the relation the

interpretation assigns toϕ.

4.3 Models and Least Fixed-Point
Extensions to the Logic

As usual, a closed formula istrue in an interpretation if it is assigned

the valueT, and an interpretation isvalid for the logic or amodel of the logic if all

theorems in the logic are true in the interpretation. This narrative now assumes that

there is an interpretation of the logic that serves as its intended model. This section

shows how a new predicate can be added to the logic, together with a recursive

axiom that defines it, in a fashion that gives rise to a unique and minimal extension

of the model. Any number of new predicates can be thus added to the logic, one at

a time. This definitional method is common in logic, but has not been widely

applied in logic programming.

A formulaΦp with free variablesx0,...x0 of sortss0,...s0 and perhaps

involving a new predicate symbolp whose signature iss0,...s0 can be assigned a

relation according to the above rules,given a prior assignment of some relation P

to p. The relation thus assigned toΦp is denoted [Φp](P). The set of relations with

relational signature {x0,...x0} are partially ordered by set containment, and they

form a complete lattice under this ordering. [Φp] acts as an operator on this lattice.

www.manaraa.com

70

(For any relation P in this lattice, [Φp](P) is another relation in the lattice.) A

lattice operator is continuous precisely when it is monotonic [31]. Thus, if [Φp] is

monotonic, it then has a least fixed-point, and that least fixed-point, written

[Φp]↑ω, is the least upper bound of all finite applications of [Φp] to the empty

relation. When this least fixed-point is taken as the interpretation ofp, then the

model so extended is a model of the logic when the predicate symbolp is added

along with the defining axiomp(x 0,...x n) ⇔ Φp. This least fixed-point is

algebraically expressed by the below recursion.

[Φp]↑0 = [Φp] ({ })

[Φp]↑i+1 = [Φp] ([Φp]↑i)

[Φp]↑ω = ∪i<ω [Φp]↑i

The question remains: when is [Φp] monotonic? We now give a

characterization of monotonicity in terms of howp is used inΦp. A negation

operator (~)applies to a predicate instance if it directly precedes the predicate

instance or it directly precedes a formula that contains the predicate instance. The

negation depth of an instance of the predicatep in Φp is the number of negation

operators that apply to it, taking universal quantification, conjunction, and

negation as the primitive logical participles.2 In this algebraic framework, it is

easy to prove the following necessary, but not sufficient, characterization of

monotonicity.

Thm. 1 (Monotonicity of positively recursive predicates.) The lattice
operator [Φp] is monotonic if every instance ofp in Φp has an even negation
depth.

Proof From the fact that relational join, division by the domain of a
variable, and projection preserve increasing and decreasing monotonicity,
it follows that if [ϕp] and [ξp] are both increasing (or decreasing)
monotonic, then so are [ϕp∧ξp], [(∀x) ϕp], and [(∃x) ϕp]. Relational

2 Negation counting is the same if disjunction,∨, is included. If material implication,⇒,
is included, the antecedent picks up an additional negation depth, e.g., the negation depth
of p in p⇒q is 1. Using these rules, negation depth is invariant under the usual axioms
for the predicate calculus.

www.manaraa.com

71

complement turns an increasing monotonic operator into a decreasing
monotonic operator, and vice versa, i.e., [~ϕp] is increasing monotonic iff
[ϕp] is decreasing monotonic. The identity operator is increasing
monotonic. Since [Φp] is built from the identity operator using
conjunction, quantification, and negations of even depth, the result follows.

Cor.2 If p occurs at even negation depth inΦp, then the intended
model for the base logic extended with the assignment of [Φp]↑ω to the
predicate symbolp is a model of the base logic extended by the predicate
symbolp and the defining axiomp(x 0,...x n) ⇔ Φp.

Every stratified Horn clause programP can be automatically converted

into a sequence of recursive predicate definitions of the formpi (x 0,...xn) ⇔Φpi ,

whereΦpi refers only to predicatespj with j²i, and wherepi occurs at zero

negation depth withinΦpi . The order of definition of the predicatesp0, ...pm is the

same as their stratification inP. The formulaΦpi is just the (universally

quantified) disjunction whose clauses are the bodies of the clauses inP whose head

is pi. This proves the following theorem.

Thm. 3 (Expressive power of stratified Horn clause programs.)
Recursive predicate definitions with even negation depth of recursion have
as much expressive power as stratified Horn clause programs.

The predicate calculus permits the explicit use of quantifiers,

disjunction, and negation, and recursive predicate definition does not restrict

recursion to zero depth. Thus, recursive predicate definition is notationally richer

than stratified Horn clause programs.

Another important quality of the extended model is that it preserves

initiality. In the terms of Goguen [9], it introduces neither junk nor confusion.

Thm. 4 (Preservation of initiality.) If the intended model of the base
logic is an initial model, then the extended model is an initial model.

Proof The extended model does not add to the interpretation of terms,
and so if the original model lacks values that are not assigned to terms in
the logic, then the extended model also lacks unused terms. (No junk is
introduced.) The relation [Φp]↑0 includes, by definition, only those tuples

www.manaraa.com

72

that can be proven to satisfy p given no assumptions about any other tuples
satisfyingp, and assuming that one can prove what tuples satisfy other
predicates. Each [Φp]↑(i+1) contains only those tuples that can be proven
to satisfyp given the tuples that are in [Φp]↑i. By induction, a tuple
satisfies p only if one can prove that it satisfies p. (No confusion is added.)

4.4 Extensions to The Intended Model

Chapter 2 describes an intended model for the base logic. This model

assigns domains to each of the sorts, and relations over those domains to each of

the predicates. This model can be extended to general formulae as described in

Section 4.2.

The intended model is extended as described in the previous section for

any sequence of recursively defined predicates, providing all recursion occurs at

even negation depth. As usual, the relation assigned to a predicatep is written [p],

and is called the denotation ofp.

4.5 The Semantic Map

Given a formulaϕ, its denotation in the intended model is a relation [ϕ]

whose columns are the free variables ofϕ, V(ϕ). Given an input signatureI and a

result signatureQ , whereI ∪Q =V(ϕ), amap is the triple (ϕ, I , Q). Define the

semantic map for (ϕ, I , Q) to be the function ƒ(ϕ, I , Q) : ¶
I → 2¶Q , where:

ƒ(ϕ, I , Q) (i) = πQ (σi ([ϕ]))

This function is often abbreviated ƒϕ when the signatures are implied

by the context, or even just ƒ when the entire map is implicit. For anyI -tuple i and

anyQ -tuple q, q∈ƒ(i) iff i and q are equal on their common variables, and i·q is in

[ϕ]. Maps are used in the coming chapters to discuss the semantics of procedures.

www.manaraa.com

73

5. Program Specification &
Compilation

The notions of a program specification, a procedure, a procedure’s

semantic description, and whether a procedure satisfies a program specification are

made formal in the first sections of this chapter. The chapter then proceeds with an

exposition of theprocedural calculus, which gives a set of operators for

composing procedures and a set of rules for calculating the composed procedure’s

semantic description. After this, a compilation algorithm is given that produces a

procedure composition that satisfies a given program specification. This chapter

closes with a careful statement of the conventions an application program must

follow in using Galois programs.

In way of preview, aprocedure is a unit of computation that operates on

a set of variables in a deterministic fashion. Thesemantic description of a

procedure is (1) a set of modes describing its use of variables, (2) a precondition,

(3) a postcondition, and (4) execution properties describing its behavior relative to

the precondition and postcondition. Both the precondition and postcondition are

formulae in the logic. These notions are formalized below.

A program is a procedure whose semantic description matches a

program specification. In the code production described in Chapter 7, procedures

are implemented as fragments of C code. Code fragments that realize simple

formulae are composed to realize more complex formulae. A fragment that

realizes a program specification is wrapped in a function definition, and the

resulting C function is the program demanded by the program specification. The

procedural calculus provides the mechanism for finding a procedure composition

that realizes a specified program. (See Figure 1.)

www.manaraa.com

74

Figure 1: Procedure composition.

 Throughout this work, characters in a Gothic typeface, e.g. s, are used

to denote procedures. A program specification is denoted by a bold, italicized

capital, such asP.

5.1 Procedural Semantics

The definition below formalizes the notion of a procedure.

Def. 2 A procedure with inputs fromI and results inQ is a functions:¶I
→ ({0, ..|s(i)|} → ¶Q ∪{½}) that maps anyinput tuple i ∈ ¶I into a sequence1 of
result tupless(i)=<q0, q1,...>. Every element ofs(i) except perhaps the last is
a tuple in¶Q . s(i) may be finite or infinite. If finite, it may terminate with the
end-of-stream value ½.

Though mathematically defined above, a procedure captures the

behavior of a computer program. A procedure accepts an input tuple and generates

a sequence of tuples on request. The value ½ is the procedure’s signal that it has

returned the last available result. Ifs(i) is infinite, the procedure continues

generating output values as long as they are requested. Ifs(i) is finite but does not

end in ½, the procedure enters an infinite loop after producing the last output value. s

is said tosucceed on input tuple i if s(i) contains a result tuple other than ½;

otherwise, it is said tofail.

1 A sequence x over the setA is a function from an initial segment of the natural numbers
into A . The domain of x is {k: 0²k<|x|}, where |x| is an ordinal called thelength of x, |x|²ω.
The j-th element of x is written xj. If s is a sequence-valued function, the j-th element of
s(i) is written (s(i))j.

s t

Procedure operators —

s⊕t
Semantic description of
composed procedure is
calculated from the semantic
descriptions of its components.

Begin with stock procedures that
realize the logic’s primitive

The goal is a composition
that realizes the program
specificationP.

⊕, ⊗, /A , etc. — are used to
compose procedures.

predicates, and a library of
previously compiled programs.

satisfiesP?

www.manaraa.com

75

Theexecution properties of a procedure s with signaturesI andQ relate

its behavior to a formulaϕ that it is intended to realize, or describe when it

terminates. The free variables ofϕ must equal the union ofI andQ . Recall from

Section 4.5 that ƒ is the function that maps anyI -tuple i to the set ofQ -tuples each

of which together with i satisfiesϕ. ƒ is used in the definition of execution

properties, below.

Def. 3 Let s be s a procedure with input signatureI and result signature
Q , and letθ andϕ be formulae called the precondition and postcondition,
where V(θ)⊆I and V(ϕ)=I ∪ Q . Given that i ranges over all tuples
satisfyingθ, s, relative toθ andϕ:

is sound if q∈f P(i) for every q­½ ins(i),

terminates if s(i) ends in ½,

is effective if it is sound, terminates, ands(i) contains precisely one
output tuple q­½ whenf P(i)­{},

is complete if it is sound, and for everyq∈f P(i) there is a q'∈s(i) that is
isomorphic to q (i.e., q::q'),

is afunction if it is effective, complete, and terminates, and

is a total function if it is a function and |s(i)|=1.

Note that a procedure can be both effective and complete only if, for each
input tuple, the output tuple is unique up to data structure isomorphism.
This is the reason such a procedure is labeled a function.

A semantic description characterizes the set of procedures with

common input and result signatures that realize a formula over a given

precondition, displaying similar execution behavior.

Def. 4 A semantic description is (1) an input signature I , (2) a result
signatureQ , (3) a preconditionθ, where V(θ)⊆I , (4) a postconditionϕ,
where V(ϕ)=I ∪ Q , and (5) a set of semantic properties that always
includessound.

Def. 5 A proceduresatisfies a semantic description if it has the stated
input and result signatures as the semantic description, and the stated
execution properties hold for the procedure relative to the stated
precondition and postcondition.

www.manaraa.com

76

Procedures that satisfy a common semantic description may differ in

several ways. Effective procedures that are not functions may return different

output tuples for the same input tuple. Complete procedures may present output

tuples in different order, and unless termination is specified, some procedures may

terminate and others not on the same input tuple. When termination is not

specified, some effective procedures may terminate or loop endlessly for input

tuples for which there is no output tuple. Note that if a complete procedure

terminates, then for each input tuple, the set of output tuples is finite.

A program specification is a semantic description, augmented with a

program name, where the postcondition is simply a named predicate. A

programmer specifies a program that is either effective or complete, but not both.

The former is the case when the programmer desiresany qualified output tuple, if

it exists, and the latter whenall qualified output tuples are desired. A program that

produces a data structure is usually effective, e.g., it producesa heap,a B-tree, ora

hash table that satisfies the program specification, whenever one exists.

An effective procedure is shown to be a function by proving that it has a

unique output tuple for each input tuple. A procedure that has no output variables

is necessarily a function. It is called acharacteristic function because it serves to

determine whether an input tuple belongs to a qualified set, i.e., whether an input

tuple satisfies some condition which the function is said toverify.

Most of the examples in this work show programs that effectively

realize their specifications. In order to compose an effective realization of a

predicate, it is often necessary to have complete realizations of component

predicates. For example, to iterate through an array findingan element that

satisfies some criterion, there must be a procedure that generatesall of the possible

index values for the array.

While the above notions are straight-forward, a few examples will serve

to make them concrete.

Ex. 6 Let c be the procedure with input signature {x, y} and result
signature {x, y} such that:

www.manaraa.com

77

c({a/x, b/y}) = <{a/x, b/y}, ½>, if x<y, and

c({a/x, b/y}) = <½>, otherwise.

Notice that there are no output variables. c is complete for the predicate
x<y. It terminates, and it is a function, though not a total function. Or to put
it another way, it is a characteristic function that verifies the condition x<y.

Ex. 7 Let i be the procedure with input signature {} and result
signature {x} that generates the sequence of all prime numbers:

i({}) = < {2/x}, {3/x}, {5/x}, ...>.

This procedure is complete for the predicateprime(x) . It does not
terminate.

Ex. 8 Let w be the procedure with input signature {x} and result
signature {x, y} that returns in integer y the sum x+2:

w({a/x}) = <{a/x, a+2/y}, ½>.

This procedure is both effective and complete for the predicate y=x+2. It is
a total function.

The last two procedures will be used in the following section to

demonstrate procedural composition. More examples will be developed in the

coming section.

5.2 Composing Procedures

The central idea of the procedural calculus is that procedures that

realize the component formulae of a larger formula can be composed into a larger

procedure that realizes the larger formula. The procedural calculus comprises a

few procedure operators and a set of rules that calculate the semantic description

of procedures composed with these operators. Each rule concerns one logical

construction and describes how to calculate the semantic description of the

composed procedure from the semantic properties of the semantic description of

the component formulae. The presentation below is organized according to the

various logical constructions. First the rules for disjunction are presented,

www.manaraa.com

78

followed by the rules for conjunction, the other boolean operators, existential

quantification, universal quantification, and finally, recursion.

Readers may benefit by reading this section in parallel with Section 7.2,

which presents the C code corresponding to the below compositions. This section

formally defines what the code there must achieve, and the code there makes

concrete the more abstract presentation below.

Disjunction

To producean output tuple that satisfiesϕ∨φ, a procedure can first try to

find a tuple that satisfiesϕ and, if that fails, try to find a tuple that satisfies φ. If

there are effective procedures that realizeϕ and φ separately, and the procedure

that realizesϕ terminates, then these are easily composed in this fashion. This

procedure operation is calledchoice.

Def. 9 Choice. The procedures s and t must have the same input and
result signatures. Define s⊗t by:

(s⊗t)(i) = t(i), if s(i) = <½>, and

(s⊗t)(i) = s(i), otherwise.

For example, let q and z be procedures with input signature {x} and

output signature {x, y}, where:

q({i/x}) = <{i/x, j/y}, ½>, if j 2=i,

q({i/x}) = <½>, if i is not a square, and

z({i/x}) = <{i/x, 0/y}, ½>.

Then q⊗z returns the square-root of x if x is a square and returns zero

otherwise. It provides an effective realization of (y2=x ∨ y=0).

To produceall tuples that satisfyϕ∨φ, a procedure can first produce all

tuples that satisfyϕ, and then, assuming that the former are finite in number, the

procedure can produce all the tuples that satisfyφ.If there arecomplete procedures

that realizeϕ andφ separately, and if the procedure that realizesϕ terminates, then

www.manaraa.com

79

these can be composed to provide a complete realization ofϕ∨φ through procedure

concatenation.

Def. 10 Concatenation. The procedures s and t must have the same input
and result signatures. Define s⊕t by:

(s⊕t)(i) = <(s(i))0, ... (s(i))n, (t(i))0, (t(i))1, ...>, if (s(i))n+1 = ½, and

(s⊕t)(i) = s(i), otherwise.

This formalizes the notion of “producing all of s and, when that completes,
producing all of t.” Note that s⊕t terminates precisely when s and t both
terminate. Given a sequence s1,...sm, the usual notation is used for repeated
sums:Σ1²k²msk = s1⊕s2⊕...sm.

Note that neither choice nor concatenation are commutative, i.e., it is

generally the caseneither that s⊗t=t⊗s,nor that s⊕t=t⊕s. This is reflected in the

calculation of semantic properties for the composed procedures in the lemma

below.

Lm. 11 If s and t are procedures with the same input and result
signatures, s realizesϕ under preconditionα, and t realizesφ under
preconditionβ, then s⊗t and s⊕t realizeϕ ∨ φ, s⊗t under the precondition
α ∧ (~ϕ ⇒ β) and s⊕t under the preconditionα ∧ β. The execution
properties of s⊗t and s⊕t with respect toϕ ∨ φ are determined from the
execution properties of s with respect toϕ and t with respect toφ, according
to the table below.

Proof Concatenation requires the preconditionα ⇒ β because both s
and t are applied to the input tuple. Choice only requires the weaker
preconditionα ∧ (~ϕ ⇒ β), because t is applied to the input tuple only if s

the composition ... ifs is ... andt is ...

s⊗t is effective effective & terminating effective

s⊗t terminates terminating terminating

s⊕t is complete complete & terminating complete

s⊕t terminates terminating terminating

www.manaraa.com

80

fails, i.e., ifφ does not hold. The rules in the table summarize the comments
above about the behavior of these compositions. Note that in the first and
third columns, s must terminate to guarantee the effectiveness and
completeness of the compositions, because s is applied first, and in order
for t to be applied, s must terminate.

Conjunction

The procedural operation that realizes conjunction issequential

composition. It realizes the conjunctionϕ∧φ by first producing a result tuple that

satisfiesϕ and, using this, producing a result tuple that satisfiesϕ∧φ. The

component procedures must coordinate their use of variables: they must not have

common output variables, and the input variables for the second procedure must

either be input variables to the composed procedure, or must have been output by

the first procedure. The definition of sequential composition first requires the

definition of an operation that augments a procedure with new variables that are

“passed through” unchanged.

Def. 12 Signature augmentation. Let s be a procedure with input
signatureI and result signatureQ = {x, ...z}, and letA = {u,...w} be any
signature disjoint fromQ –I . Let i be a tuple overI , and j a tuple overA
such that i and j are equal on their common variables (if any). Then:

 (s Â)(i·j) = s(i)·j.

In other words, sÂ adds the variables inA to the input and result

variables of s, by passing values for them through unmodified. The operation is

defined broadly, so thatA may include variables that are already input variables to

s. Sequential composition is now defined using the operations of signature

augmentation and procedure concatenation, previously defined.

Def. 13 Sequential composition. Let s be a procedure with input
signatureI and result signatureQ , t a procedure with input signatureJ and
result signatureR , and assume that their output signatures are disjoint, i.e.,
that (R –I)∩(Q –J)={}. Let A = I ∪(J –Q) andB = R ∪Q . The composition

www.manaraa.com

81

t (s) with input signatureA and result signatureB is defined at each
A -tuple, a, by:

 (t (s))(a) =Σ0²k<|s| t^(Q ∪J) (s Â (a))k.

Operationally, this says: apply s to theI part of a; augment this

sequence with the non-I part of a; apply t to each element (s^A (a))k of the

resulting sequence; augment the result with the non-J part of (s(a))k; and finally,

concatenate these sequences. More simply, it says: feed a tuple to s, feed the first

resulting tuple to t, let t produce its output sequence, then go back for the next

tuple from s, where all variables not used by s or t are passed through them

unchanged.

For example, consider the procedure i that completely realizes

prime(x) and the procedure w that realizes the functiony=x+2 . (Both were

described in the previous section). The composed procedure w(i) pairs each prime

with the number that is two greater:

(w(i))({}) = <{2/x, 4/y}, {3/x, 5/y}, {5/x, 7/y}, ...>

Thus, w(i) is a complete realization of the formula:prime(x) ∧ y=x+2 .

Let j be the characteristic function that verifies that y is prime:

j({a/y}) = <{a/x}, ½>, if a is prime, and

j({a/y}) = <½>, otherwise.

Then j(w(i)) produces all pairs of primes whose difference is two:

j(w(i))({}) = <{3/x, 5/y}, {5/x, 7/y}, {11/x, 13/y}, ... >

In other words, j(w(i)) is a procedure that is a complete realization the

formula:prime(x) ∧ y=x+2 ∧ prime(y) . Note that i is acomplete realization of

the predicateprime(x) while j is acharacteristic function for the predicate

prime(y) . The lemma below summarizes the properties of sequential composition.

Lm. 14 If s realizesϕ under preconditionα, and t realizesφ under
preconditionβ, then if t(s) can be formed, it realizesϕ ∧ φ under the
preconditionα ∧ (ϕ ⇒ β), and the execution properties of t(s) with respect

www.manaraa.com

82

to ϕ ∧ φ are determined from the execution properties of s with respect toϕ
and t with respect toφ, according to the table below.

Proof Each tuple produced by t(s) derives from the application of s,
first, to the input tuple, and then of t to one of the result tuples from the
prior application of s. Because of this order of application,α ∧ (ϕ ⇒ β) is
the weakest precondition that guarantees that (1)α holds prior to the
application of s, and (2) for a result tuple of s (together with other input
variables to t(s)),β holds.

The rules in the table are fairly simple. In the first two columns, the
conditions trivially guarantee that t(s) produce a result tuple whenever one
exists. For completeness, in the first case, it is necessary that t terminates,
since otherwise t(s) does not produce tuples after the first result instance of
s where t fails to terminate. The last two rules follow from the fact that
sequential composition generalizes function composition.

Existential Quantification and “True”

A projection procedure with input signatureI and result signature

Q ⊆ I is the total function that merely passes through its result arguments. When

I =Q , a projection procedure is called anidentity procedure.

Projection procedures realize existential quantification. Or to frame this

t(s) is ... if s is ... andt is ...

effective complete effective

effective a total function

complete complete complete &
terminates

a function complete

terminates terminates terminates

a function a function a function

a total function a total function a total function

www.manaraa.com

83

more broadly, existential quantification is only realized constructively. From the

programmer’s viewpoint, an existentially quantified variable serves to hold an

intermediate value that is produced by but not returned from a computation. After

the quantified variable is used, a projection function applied through sequential

composition removes it, i.e., “projects it off.” (Chapter 7 shows how projection

procedures are implemented as memory deallocation.) These remarks are

formalized in the lemma below.

Lm. 15 If s with result signatureQ realizesϕ under preconditionα, and
p is a projection ofQ ontoQ –E , then p(s) realizes (∃E)ϕ under
preconditionα. p(s) is effective, is complete, and terminates precisely
when s is effective, is complete and terminates.

Projection procedures can be viewed as realizing the boolean constant

True . (∃E)ϕ can be viewed asϕ∧True , where the procedure that realizesTrue fails

to pass on the quantified variables.

The Other Boolean Operators

Given realizations of conjunction, disjunction, andTrue , a realization

of negation would provide a complete set of boolean operations. This motivates

the following definition.

Def. 16 Procedure Complement. Given any procedure s with input
signatureI and result signatureQ , the procedure !s is defined at each
I -tuple i by:

!s(i) = <½> if s(i) = <q, ...> for someQ -tuple q,

!s(i) = <i, ½> if s(i) = <½>, and

!s(i) = <>, otherwise.

In short, when s succeeds !s fails, and when s fails and terminates !s

succeeds. The procedural complement realizes negation, but it will have a different

result signature from s if s has any output variables. This is made rigorous in the

lemma below.

www.manaraa.com

84

Lm. 17 If s with input signatureI and result signatureQ realizesϕ
under preconditionα, then !s with input and result signatureI realizes
~(∃O)ϕ under preconditionα, whereO =Q –I is the output signature of s. !s
is a function, and it terminates if s never produces the null sequence, i.e.,
never enters an infinite loop before producing any output. (This is a slightly
weaker condition than saying thats terminates, since it permits infinite
sequences.)

Negation can be used directly, but more often, it is implicit in the if-

then-else construct,ϕ⇒φ∇θ. The constructϕ⇒φ∇θ is logically equivalent to

(ϕ∧φ)∨(~ϕ∧θ), and it is realized through this rewrite. As pointed out above,

procedural complement realizes the negation of a formula— without existential

quantification — only when the complemented procedure verifies some condition.

Because of this, the realization ofϕ⇒φ∇θ requires a procedure s that is a

characteristic function forϕ, i.e., whereI =V(ϕ). This is congruent with the

intended purpose ofϕ⇒φ∇θ, to provide the programmer a construct that

corresponds to theswitch statement of C.

Universal Quantification

Universal quantification provides the programmer a way to verify a

condition over some set. The only form of universal quantification that can be

realized is (∀A)ϕ⇒φ, whereϕ generates values in some set, andφ verifies the

condition. This formula is realized through the procedural composition defined

below.

Def. 18 Procedure Division. Given any terminating procedure s with
input signatureI and result signatureQ , a characteristic function t on
signatureJ ⊆ Q , and a signatureA ⊆ J , the procedure s/A t has input
signatureI and result signatureQ –A and, for eachI -tuple i, (s/A t)(i) is the
Q –A projection of the subsequence of s(i) where:

πQ –A (q)∈(s/A t)(i) ⇔ q∈s(i) ∧ (∀r)((r∈s(i) ∧ πA (r)=πA (q)) ⇒ r∈t(r))

Consider the set of tuples in the sequence s(i) that contain theA -tuple, a,
and the set of tuples in the sequence t(i) that also contain the sub-tuple, a. If

www.manaraa.com

85

these two sets are not equal, remove from s(i) the first set. Continue to pare
s(i) by removing such sets for allA -tuples. The result is (s/A t)(i).

For example, let s be the complete procedure with input signature

{b, x} and result signature {b, x, k} that realizes the formula 0²k<b. (The variable x

is an integer array that is passed through unchanged by s.) Let t be the procedure

with input and result signature {b, x, k} that verifies x[k]>0. Then s/{k} t is the

procedure with input and result signature {b, x} where:

s/{k} t({b0/b, x0/x}) = <{b 0/b, x0/x}, ½>, if x0[k]>0 for 0²k<b0, and

s/{k} t({b0/b, x0/x}) = <½>, otherwise.

In other words, s/{k} t realizes the formula (∀k)(0²k<b⇒ x[k]>0). Note

the similarity between procedure division and relational division. The former is

used to procedurally realize universal quantification, while the latter is used to

define the declarative semantics of universal quantification. To realize (∀A)ϕ⇒φ,

s must completely realizeϕ, since otherwise some values may not be verified by t.

The lemma below adds to the previous discussion a rule for calculating

preconditions.

Lm. 19 If s with input signatureI and result signatureQ is a complete
realization ofϕ under the preconditionα, t verifiesφ with signatureR ⊆ Q

under preconditionβ, andA is a signature that is a subset ofR , then s/A t is
a complete and terminating realization of (∀A)ϕ⇒φ, under the
preconditionα∧(ϕ⇒β).

Proof The semantic realization of s/A t is discussed above. As to the
precondition, (ϕ⇒β) is sufficient, rather thanβ, because every tuple given
to t is generated by s, and hence satisfiesϕ.

Literals and Argument Binding

So far in the discussion of the procedural calculus, the formal and actual

arguments to predicates have been assumed identical. That is, there has been no

description of how to realizep(f(x), y) , for example, given a realization of

p(u, v) . Variable binding turns a procedure for a predicate into a procedure for a

www.manaraa.com

86

positive literal built on the predicate. This is formalized in the definition below.

Def. 20 Variable binding. Let l be a positive literal formed from the
literal p(x0,...xz), i.e.,l is p(t0,...tz), where t0,...tz are terms. Let s be a
procedure that realizes p, where:

xb,...xd are the pure input variables (mode isin),

xe,...xg are the consumed input variables (mode isinx),

xh,...xj are the output variables (mode isout), and

y0,...ym are the variables in the terms tb,...td.

If the terms te,...tg, th,...tj (which correspond to the consumed input
variables and output variables of s) are simple variables, then define the
procedure sl with input signatureI ={y 0,...ym,te,...tg}, consumed input
signatureD ={t e,...tg}, and output signatureO ={t h,...tj}, on an input tuple
i={w 0/y0,...wm/ym, ve/te,...vg/tg}, as follows. Let vb,...vd be the values of
terms tb,...td applied to the input tuple i. If the k-th result of s on i (as passed
through the binding) is:

{v b/xb,...vd/xd, vh/xh,...vj/xj} = sk({v b/xb,...vd/xd, ve/xe,...vg/xg}),

then the k-th result of sl is:

sl
j(i) = {w 0/y0,...wm/ym, vh/th,...vj/tj}.

The important condition in the above definition is that the terms bound

to the consumed input arguments and the output arguments must be simple

variables. Obviously, the procedure sl has the same semantic properties as s. This

is formally stated below.

Lm. 21 The procedure sl is sound, effective, complete, and terminates
when s is sound, effective, complete, and terminates, respectively.

Chapter 7 deals with generating code for terms. Some terms give rise to

preconditions, thus sl may have preconditions that s does not. This is discussed in

that chapter.

www.manaraa.com

87

Recursion

Only effective realization is supported for recursively defined

predicates. (Obviously, if a recursively defined predicate can be proved a function,

then its effective realization is also complete.) LetP be a program specification

with postcondition predicatep, which has the recursive definitionp⇔Φp. Let Es be

a composition of sequence-valued functions that realizesΦp such that (1) s is the

procedure symbol assigned top in Es, (2) s is assumed to be effective forp,

(3) given this assumption, Es is an effective realization ofΦp, and (4) s and Es have

the same input and result signatures. Given this, a least fixed-point can be defined

for s so that it is indeed an effective realization ofp.

Let s0 be the unique procedure with same signature as s that has <> as

its output for any input tuple, i.e., s0 is the procedure that enters an endless loop for

any input tuple. Recursively define sk+1 to be Esk
, i.e., the procedure that results

from the procedure composition Es, with sk in the place of s. Then the least fixed-

point for s is the sequence limit as k increases without bound of sk. This is

formalized in the lemma below.

Lm. 22 For any input tuple i, the result tuple returned sk(i) is in the
relationσi([Φp]↑k), that is,πI ([Φp]↑k) is the set of input tuples for which
sk returns a result tuple q, and i·q∈ [Φp]↑k.

Proof By induction. This is trivially true for k=0. If it is true for any k,
then it is true for k+1, because given the inductive assumption, Es(k+1)

 is an
effective realization of [Φp]↑(k+1).

The immediate corollary is that sk is a monotonic sequence of partial

functions, and that it therefore has a least fixed-point s, and that this is an effective

realization ofp.

Determining that recursively defined procedures terminate is a little bit

trickier. It was fair to assume that s0 was effective precisely because it was the

most undefined procedure, the one that never terminates. If Es is shown to be a

terminating compositionwithout assuming this of s, then s is in fact terminating.

This does not help much, because the composition rules above do not support any

www.manaraa.com

88

such deduction! (All compositions produce procedures that may fail to terminate

on some input tuples if any component fails to terminate.) Hence, for recursive

procedures, proving termination is thrown back on the usual methods, such as

showing that the recursion is grounded.

Termination is only at issue for input tuples for which there is no result

tuple that satisfies the predicate, i.e., for input tuples that should cause the

procedure to fail. If the recursive predicate realized by an effective procedure can

be satisfied for any input tuple, then the procedure is terminating. Thus, one way to

prove termination is to show that for any input tuple that satisfies a procedure’s

precondition, there exists a result tuple that satisfies the predicate. This is a more

general method of proving termination than showing that a recursion is grounded.

Summary of Procedure Operations

The table below provides a summary of procedure operations, the

logical constructs they realize, and their preconditions. In it, s and t are procedures

that realize the formulaeϕ andφ under preconditionsα andβ, or s is a procedure

that realizes the predicate in the literall under preconditionα andγ is the

precondition for evaluatingl ’s terms.O is the output signature of s.

Operation Realizes Precondition Purpose

s⊗t ϕ∨φ α∧β Choice effectively realizes disjunction.

s⊕t ϕ∨φ α∧β Concatenation completely realizes
disjunction.

s Â Signature augmentation merely passes
through variables not used by s.

t(s) ϕ∧φ α∧(ϕ⇒β) Sequential composition realizes conjunction.

p(s) (∃A)ϕ α p projects off the variables ofA .

!s !(∃O)ϕ α Complement realizes negation.

s/A t (∀A)ϕ α∧(ϕ⇒β) Division realizes universal quantification.

sl l α∧γ Variable binding for the literall.

www.manaraa.com

89

Note that the precondition for sequential composition and division may

be weaker than the second component’s precondition and, regardless, is weaker

than the conjunction of the two components’ preconditions. This is the underlying

mechanism that allows the programmer to build run-time checks into a predicate

definition, making the predicate more complex, while weakening the precondition

of the program that realizes the predicate.

5.3 From Program Specifications to Code

The algorithm described below returns a procedure composition that

satisfies a given semantic description, providing that a prerequisite assertion

generated by the algorithm holds. This algorithm relies on a stock of procedures

built into the compiler that realize the primitive predicates and a library of

previously constructed programs. The algorithm employs the following variable

types:

lgclForm Represents a logical formula.

execProp Represents the desired execution properties and the desired
input and output signatures.

procComp Represents a procedure composition and its precondition.

The following functions are used:

ConstructionOf(F) Returns an enumerated type that indicates the construction
of the formulaF, i.e., whether it is a conjunct, disjunct, etc.

NeedComplete(P) Returns true if the execution propertiesP specify complete
realization.

Fn(F) Returns the n-th component of the formulaF.

En(F, E) E specifies the desired signatures and execution properties
for F. En returns the needed signatures and execution
properties for the n-th component ofF.

Concat(P1, P2) Returns the concatenation of the procedures P1 and P2 and
the precondition for the composition.

Es ϕ α Indicates least fixed-point realization of a
recursively defined predicate.

Operation Realizes Precondition Purpose

www.manaraa.com

90

Choice(P1, P2) Returns the choice composition of the procedures P1 and
P2, and the precondition for the composition.

...(P1, P2) For each procedure operator, there must be a function that
returns the composition procedure and its precondition.

MakePrim(F, E) Given a literalF built from a primitive predicate and desired
execution propertiesE, this returns the procedure that
realizes the literal.

MakeCall(L, F, E) Given a literalF built from a defined predicate and desired
execution propertiesE, this searches the libraryL for a
program that realizes the predicate with the desired
execution properties, and returns the procedure that calls
this program to realize the literal.

The algorithm is presented as a recursive function,Compile . Recursion

ends in the construction of literals using the functionsMakePrim andMakeCall .

The former encodes the compiler’s knowledge of how to realize the primitive

predicates. The latter makes use of a library of programs that have been previously

compiled.MakePrim will fail if there is no way to realize the primitive predicate

with the desired execution properties. (This is discussed in Chapter 7.)MakeCall

will fail if the library does not contain a previously compiled program that realizes

the desired predicate with the desired execution properties. Either will fail if the

literal uses complex terms for consumed input arguments to or output arguments

from the predicate. The pseudo-code forCompile is shown below.

procComp Compile (// calculate composed procedure &

// precondition from:

lgclForm Formula, // logical formula to realize

execProp Prop // desired signatures & exec. properties

){

procedure Proc1, Proc2;

switch (ConstructionOf (Formula)) {

case Disjunction:

if (NeedComplete (Prop)) {

Proc1 = Compile (F1(Formula), E1(Formula, Prop));

Proc2 = Compile (F2(Formula), E2(Formula, Prop));

return Concat (Proc1, Proc2);

}

else

Proc1 = Compile (F1(Formula), E1(Formula, Prop));

www.manaraa.com

91

Proc2 = Compile (F2(Formula), E2(Formula, Prop));

return Choice (Proc1, Proc2);

}

case Conjunction :

Proc1 = Compile (F1(Formula), E1(Formula, Prop));

Proc2 = Compile (F2(Formula), E2(Formula, Prop));

return SeqComp (Proc1, Proc2, Proc);

case Negation:

...

case PrimitiveLiteral:

return MakePrim (Formula, Prop);

case OtherLiteral:

return MakeCall (Library, Formula, Prop);

}

}

This algorithm assumes that when there is a choice of execution

properties thatE1 andE2 can assign the component formulae so that the composed

formula has its desired properties — i.e., when more than one rule of the

procedural calculus might apply — that E1 and E2 oracularly select a rule that

makes the rest of compilation succeed, if such a rule exists. The algorithm is

actually implemented as a backtracking search that tries one rule, and if that fails,

then returns to the choice point and tries another. (The first example in Chapter 8

discusses this further.)

The algorithm above calculates a precondition,β, that is required by the

composed procedure. The programmer specifies a desired precondition,α, in the

program specification. In order for the calculated composition to satisfy the

program specification,α⇒β must hold. This is the prerequisite assertion on which

successful code generation depends.

As described in Section 3.3, the compilation process has several steps.

These are repeated below, but with specific reference to the compilation algorithm

above and the form of the prerequisite assertion.

www.manaraa.com

92

(1) The programmer defines a predicate and specifies a program that realizes it.

(2) Compile the program. If the program fails to compile, display the points of

failure and permit the programmer to change the predicate definition or program

specification.

(3) Verify the prerequisite assertionα⇒β. The programmer does this using theorem

proving tools.

(4) Generate C code from the procedure composition returned byCompile . Add the

compiled program to the library. Add theorems about the program specification,

generated during verification of the prerequisite assertion, to the theorem library.

The compilation algorithm given above infers the order in which

component formulae are made true from their textual order in conjunctions and

disjunctions. If compilation fails for this ordering of formulae, for example,

because the first formula in a conjunct requires more input to be realized, the

compilation algorithm does not try a different ordering. It is clearly desirable to

relieve the programmer of this responsibility. On the other hand, it is impossible

for the compilation algorithm to look at all logically equivalent forms of a

postcondition. This gives rise to the notion that a small number of rewrite rules

that preserve logical equivalence could significantly ease the programmer’s task

without too much burdening the compiler. (See Figure 23.)

Figure 23: Combining logical rewrites with computation graph construction.

These rewrite rules would be applied to a formula during the

compilation algorithm if the formula fails to compile. This would enlarge the

number of formula for which the compiler successfully generates a procedure

composition. Alternatively, the compiler, after showing the programmer where

compilation fails, could allow the programmer to select from the set of rewrite

original postcondition

postcondition 0

rewrite
rules

program 0

compilation
algorithm

postcondition 1

postcondition n program n

compilation fails

www.manaraa.com

93

rules to apply for a further try at compilation. In this scheme, the programmer

interacts with the compiler in searching for an order of computation that realizes

the desired formula.

5.4 The Contract between the Calling
Program and a Galois Program

In practice, a Galois program is a callable unit of execution (such as a C

function) invoked from an application written in a traditional language (such as C).

A Galois program has two modes of invocation, known asentry points. Thereturn-

first entry point binds the input arguments and calculates the first result tuple. The

return-next entry point calculates the next result tuple. An effective program only

needs the return-first entry point, since it only returns one tuple.

A program has a return status. After it is invoked, either (1) the program

succeeds, returning the statussuccess and the next qualified output tuple, (2) the

programfails, returning the statusfailure, indicating that there are no more

qualified output tuples, or (3) the program loops forever. As described earlier, this

behavior is determined by the program’s output sequence s, where each invocation

of the program via thereturn-next entry point advances the position k in the

sequence s(i). The program succeeds if (s(i))k is a tuple, fails if (s(i))k is ½, and

loops forever if k³|s(i)|. Invocation via thereturn-first entry point sets k to 1 and

causes the appropriate behavior for k=1.

Each successful invocation of a Galois program changes the current

memory state. As described in Section 2.8, a memory state is equivalent to a state

specific submodel of the intended model. Hence, each successful invocation of a

program can be viewed as moving from one such submodel to a second. In the

simplest case, this change to the state specific submodel can be described as

follows. (1) Remove all data structure instances that are bound toinx arguments,

and all their components, from the submodel. (2) Add to the submodel all data

structure instances, and their components, that are in the output tuple. This is

shown in Figure 24, below.

www.manaraa.com

94

Figure 24: Invoking a Galois program.

Unfortunately, this simplest case does not always hold. For example, in

Figure 24, ifa andc have common parts, then removingc would change the

memory state of the calling program in an unexpected way. This is the problem of

side effects that results from data aliasing. Aliasing can result in even worse

problems. For example, ifb andc have common parts, the Galois program may not

behave correctly (may not meet its specification), because the value bound tox

might change in unpredictable ways during the program’s execution.

The problems that arise from aliasing are prevented by the application

abiding by certain conventions. These conventions, and the subsequent guaranteed

behavior of called Galois programs, can be viewed as a contract between the

application and Galois programs. (See [41] for a discussion of this view of

programming.) The compilation process guarantees that Galois programs abide by

their end of the contract. The application programmer is responsible for seeing that

the calling application does likewise. (The fact that the compilation process

guarantees this for Galois programs argues that as much of the application’s work

as possible should be realized through Galois programs.)

The first requirement of the contract is that the application and the

invoked Galois program use correctly a common memory allocation mechanism.

There are two rules that determine the correct usage of the memory allocation

mechanism.

(1) Only memory that is currently allocated from the memory allocation mechanism

is included in the set of data structure instances that characterize the application’s

memory state, and only this memory may be modified.

a

b
c

d
e

in x
inx y
out z

Program P

Calling program at invocation of P

a

b

d
e

in x
inx y
out z

Calling program on return from P

f

Program P

www.manaraa.com

95

(2) Only memory that is currently allocated from the memory allocation mechanism

can be deallocated.

The memory allocation mechanism can be viewed as dynamically

extending or contracting the program’s address space. The program’s memory

state is the state of allocated memory, which is viewed as a state specific submodel

of the logic, i.e., a collection of data structure instances and their components.

The next few conditions are ones that the application guarantees for the

invoked Galois program. If the application fails to uphold these conditions, the

Galois program may execute incorrectly.

(3) The application passes to a Galois program, as its input tuple, a set of data

structure instances that satisfy the Galois program’s precondition.

(4) Each data structure instance passed as a consumed input argument is disjoint from

any of the other input arguments (whether or not consumed).

(5) Each data structure instance passed as a consumed input argument resides in a

collection of memory chunks, one for eachstruct and array component, that

were allocated from the memory allocation mechanism with the appropriate size.

(The appropriate size for astruct or array follows from its representation in C

data structures, as described in Chapter 7.)

Given the assumptions made so far, a Galois program guarantees

several things for the application. These are listed below.

(6) The Galois program satisfies its program specification.

(7) On a Galois program’s return from a failed execution, the state of memory is

unchanged from when the Galois program was invoked.

(8) On a Galois program’s return from a successful execution, memory is changed

only by (A) the deallocation of all memory in data structure instances that were

bound to the consumed input arguments, followed by (B) the allocation and

assignment of values to new memory in which data structure instances bound to

the output values now reside.

From the point of view of the application, a destructive update is

functionally equivalent to the deallocation of consumed input arguments, followed

by the allocation of memory for the output arguments. That some output arguments

reside partly in the same memory that had been used for consumed input

www.manaraa.com

96

arguments can be viewed as an accident of memory allocation. In fact, whenever

possible, a Galois program often short-circuits the memory manager by directly

updating the data structure instances that are passed as consumed inputs. This is

transparent to the application, except for the gain in efficiency.

The rules above do not prevent all problems from aliasing. The

application may still pass a consumed input argument that is aliased with or

referenced from a data structure instance unknown to the Galois program. (Note

that rule (8) is phrased in terms of what memory is deallocated, not in terms of

what data structure instances are changed or removed.) When an application does

this, it is most likely a mistake. There is no way that Galois programs can detect or

prevent this. And as long as the application abides by the rules above, the Galois

programs will continue to behave correctly, despite any destruction they are doing

to data structure instances or pointers they leave dangling in the “outside” world.

Of course, if the application mistakenly passes as a consumed input a data

structure instance on which the application later relies, it is unlikely that the

application will be able to keep up its end of the bargain for long. The next rule

below sharpens rule (4), to prevent this last problem due to aliasing. Clearly, this

rule is not required for Galois programs to behave correctly. The previous rules

suffice. It is more an indication of risky programming that most times will cause

the application to violate one of the previous rules.

(9) Each data structure instance passed as a consumed input argument is disjoint from

any data structure instance in memory except its own components. All pointers

(with the exception of the argument binding) that point into the data structure

instance are also part of it.

Given that the above rule is followed, the guarantee in (8) can be

sharpened. The way a Galois program changes memory state now satisfies the

clean picture shown in Figure 24. The final rule below states this sharpened

guarantee.

(10) On a Galois program’s return from a successful execution, memory is changed

only by (A) the removal of data structure instances that were bound to the

consumed input arguments, and their pieces, and (B) the addition of data structure

instances bound to the output values.

www.manaraa.com

97

The remainder of this work assumes that the application upholds its end

of the above contract.

www.manaraa.com

98

6. Computation Graphs: An
Intermediate Representation

The previous chapter described a procedural calculus and a compilation

algorithm that generates a procedure from a program specification. The generated

procedure is represented as an expression in the procedural calculus. A different,

graphical form for representing procedures is presented below. This form serves as

an intermediate step between compilation and code generation. There are several

reasons for introducing an intermediate graphical form.

• Visual display: A graphical representation provides a better visual display of the

generated procedure, for example, to show where the compiler fails when the

logic is inadequately refined for compilation, to show the order of computation,

and to show the origin and transmission of preconditions through the procedure.

• Advanced compilation: The compilation algorithm presented in the previous

chapter fails when memory deallocation needs to be pushed into procedures that

consume memory. This chapter presents an algorithm to deal with this problem.

This algorithm is most easily presented in terms of graphs.

• Support for optimization: Compiler optimization techniques typically deal with

programs expressed as graphs that explicitly represent control and data flow [18].

The introduction of a graphical intermediate representation paves the way for

further program analysis and optimization.

The exposition below shows how a computation graph is derived from a

formula in the logic, and it assigns a computation graph a semantic map function ƒ

as described in Section 4.5. It also describes how a computation graph can be

augmented withcontrol information that represents the choices made during

compilation. There are two important properties of computation graphs, for their

service as an intermediate representation:

(1) The computation graph and the formula from which it derives have the same

semantic map function.

(2) Computation graphs, when augmented with control information, are equivalent to

procedure compositions.

www.manaraa.com

99

These properties, and the different processes involving the

representations, are shown in Figure 1, below.

Figure 1: The relationships between the representations.

The derivation of a computation graph from a formula fixes the

direction of data flow. (Rewriting the order of conjunctions and disjunctions, as

described in Section 5.3, will change the computation graph.) The control

information describes which procedure compositions are used when the specifying

formula permits a choice.

6.1 Introduction to Computation Graphs

A computation graph is a directed acyclic graph1 with annotated2

nodes. A computation graph is constructed according to a set of composition rules

1 As usual, adirected graphG is a set V ofnodes (vertices) and a set E ofarcs (edges).
Each arc e∈E is an ordered pair <m, n> in V×V. The arc e is anoutgoing arc for m,
which is thetail of e, and anincoming arc for n, which is thehead of e. Arcs are said to
leave, enter, or impinge on nodes, and nodes to carry arcs. If <m, n> is an arc, the node n
is said to succeed the node m. A node is asource if it is the successor of no other node,
and asink if no other node succeeds it. Sources and sinks areterminal nodes; all others
areinternal nodes. Let R be the transitive closure of the successor relationship, i.e.,
<m, p> is in R if <m, p> is an arc, or if <m, n> is an arc and <n, p> is in R. R is called
the reachability relation and a node p is said to be reachable from m precisely when
<m, p> is in R. A directed graph isacyclic if no node is reachable from itself.

computation
graph

defining
formula

procedure
composition

ƒ: ¶I → 2¶Q

Semantic map
is preserved

Compile

Augment

modified
graph

modified
procedure

fix or
optimize

Augment

The derivation of a computation graph
fixes the direction of data flow.

Augmenting a computation graph with
control information makes it equivalent

to a procedure composition.

www.manaraa.com

100

described later. For now, only one implication of this construction is important:

every computation graph has one source node and one success node. The nodes

used in computation graphs are shown in Figure 2, below.

Figure 2: The basic nodes.

Each node type has a fixed number of incoming and outgoing arcs, as

indicated by its icon, except for the branch node, which has one incoming arc and

two or more outgoing arcs, and the union node, which has two or more incoming

arcs, and one outgoing arc. The literal node and recursion node each have two

outgoing arcs: asuccess arc, on top, and afailure arc, beneath. The universal

quantification node has two incoming arcs, theoriginal arc and thetest arc.

Semantically, each internal node, except the union node and universal

2 Formally, anode annotation is a function f from the set of nodes V into some set, f(V).
Similarly, anarc annotation is a function g from the set of arcs E into some set, g(E).
Annotations are usually viewed as labels, icons, or decorations attached to nodes and
arcs.

∀

signature

t

f

P

(literal, A , B)

L

signature

Start node: Annotated with a relational signature.

Success node.

Failure node.

Literal node: Annotated with a literal and two signatures,A andB .

Recursion node:Annotated with a literal and two signatures.

Deallocate node: Annotated with a relational signature.

Branch node.

Union node.

(literal, A , B)

Universal quantification node:Annotated with a signature.

. .
 .

. .
 .

signature

www.manaraa.com

101

quantification node, denotes a function,f : ¶A → 2¶B that transforms each input

tuple into a result relation, whereA andB are the signatures of the input tuple and

result relation, respectively.f can be viewed as a function that maps a relation over

A into a relation overB , by applying it to one tuple at a time and taking the union

of the result. Formally, define the relation functionf ´ : 2¶A → 2¶B by:

t ∈ f ´(R) ⇔ (∃x)(x ∈ R ∧ t ∈ f (x))

One can view each input relation as being presented to the node along

its incoming arc, and the node as presenting a result relation along each of its

outgoing arcs. The sole role of the start node is to pass aninitial tuple on to its

outgoing arc. (This tuple has the signatureI that is indicated by the start node.) By

chaining the relational functions of the internal nodes, each arc e in the graph is

assigned a functionf e: ¶I → 2¶B that transforms the initial tuple into a relation.

(See Figure 3.) If e is the incoming arc to the success node, then f e is the

denotation assigned to the computation graph as a whole, writtenf G .

Figure 3: Denotational semantics for the computation graph.

The terminal nodes can be viewed as an interface for the computation

graph as a whole, where the start node accepts an initial tuple, and the success node

returns a result relation. The relation returned by the success node provides the

graph’s semantic denotation as a function that maps a tuple to a relation. (It will

turn out that the failure node returns the initial tuple precisely when the success

relation is empty.)

The functionf e defines a relation, and hence a signature, for each arc e.

The signature of an arc can be viewed as indicating what variables are alive at that

portion of the graph. This signature is called thevariable scope at the arc. The

deallocate node has as its sole function the removal of variables from the current

I

t
t

some node
x

f x´ maps R to S

R S
arc e

chaining all node maps creates
f e that mapst to S

initial
tuple

If e is the incoming arc to
the success node, thenfe is
the semantic denotation of
the computation graph as

a whole, i.e., fG = fe.

Computation
graphG .

www.manaraa.com

102

scope. There is no corresponding allocate node. Instead, variables are introduced

by literal or recursion nodes. In the next chapter, the notion of variable scope will

be carried forward into a more detailed look at memory management.

To complete this account of denotation for computation graphs, it

suffices to describe what function is assigned to each internal node. The relation S

produced by an internal node is described below in terms of (1) the node’s

annotations, and (2) the node’s input relation, R. For literal and recursion nodes, Ss

is the relation presented to the success arc, and Sf is the relation presented to the

failure arc. For the universal quantification node, Ro is the relation passed along its

original arc, and Rt is the relation passed along its test arc.

Branch node: S = R. This node’s output relation is a copy of its input relation. Its

output relation is placed on all of its outgoing arcs.

Union node: S =∪i Ri. This node’s output relation is the union of its input relations. It

is the only node that has multiple input relations.

Universal quantification node: (∀x∈¶X)(σX =xS = (σX =xRo)/(σX =xRt)). Like the

union node, this node performs a relational operation. First, divide the input

relations into partitions each of which have a commonX value, whereX is the

signature of the node. In each partition, the result is the original relation divided

by the test relation. In other words, for eachX value, S contains all of the tuples in

Ro if Rt also contains these tuples, otherwise, S contains none of these tuples.

Deallocate node: S = R\A . This node is annotated with a relational signatureA that

indicates what columns to remove from its input relation R.

Literal node: Ss = πB (R [l]), Sf = R–πτ(R)(Ss). The node is annotated with a literall

in the logic. The predicate symbol ofl is either part of the base logic or its

predicate is realized by a previously compiled program. The node is also

annotated with two signatures, theinput arguments, A , and thereturned

arguments, B . Their union must equal the variables ofl. The denotation of this

node is the functionf l: δA → 2¶B where b∈ f l(a)⇔ a β∈[l]. ([l] is the

denotation ofl. This construction is described more fully in Chapter 5.)

Recursion node: Ss =R LFP(G), Sf = R–πτ(R)(Ss). The only difference between the

literal node and the recursion node is that the predicate for the latter isp, the

predicate being defined by the formula. In terms of computation graphs, this node

can be viewed as a recursive instantiation of the computation graphG . That this

leads to a least fixed-point, and that it mirrors the semantics of the logic, will be

proved at the end of Section 6.2, below.

www.manaraa.com

103

As mentioned earlier, most nodes can be understood in terms of what

result tuples they produce from each input tuple on their incoming arc. The union

and universal quantification nodes must be understood as operating directly on

relations, the former because it has several incoming nodes, and the latter because

it performs a relational divide, which cannot be decomposed into tuple operations.

6.2 Constructing Graphs from a Program
Specification

This section describes the constructions that generate computation

graphs from a program specification,P. The relevant parts ofP are the formulaΦp

that defines the new predicatep and the input signature and result signatures,I and

Q . Each construction rule applies to a formula of the logic. Each construction

generates a computation graph from the nodes described in Section 6.1, possibly

combined with computation graphs that were constructed for syntactic pieces of

the formula. Each construction yields a directed acyclic graph with one start node,

one success node, and one failure node. Most important, each construction

preserves the following semantic invariants.

Semantic Invariants for Computation Graph Construction:

(1) Meaning of failure node: If a computation graphG denotes the functionf , then

the incoming arc e to failure node denotes the functiong , whereg (t)=t if f (t) is

empty, andg (t) is empty iff (t) has tuples. (For an input relation R, this means that

g ´(R) contains precisely those tuples from R that generate no tuples inf ´(R).)

(2) Preservation of semantic denotation: If a computation graphG is constructed

from a program specificationP, whose defining formula isΦp, with input

signatureI and result signatureQ , then its semanticf G is the same as the

semantic mapf P for the program specification. (See Section 4.5.)

The base construction, if the formulaΦp is a non-recursive literall,

generates the computation graph shown in Figure 4.I andQ are the input

variables and result variables specified inP. This construction trivially satisfies the

semantic invariants.

www.manaraa.com

104

Figure 4: Construction for a literal.

The construction for positive, recursive literals is identical to the one

for other literals, above, except that a recursion node is used instead of a literal

node. It is a stickier issue to show that it satisfies the semantic invariant. This is

addressed after the other constructions are explained.

Graphs are composed by removing terminal nodes and connecting their

arcs elsewhere. For example, the upper part of Figure 5 shows unspecified

computation graphs for formulaeθ andφ, each drawn as a shaded body with arcs

connected to terminal nodes. The lower part of Figure 5 shows these are combined

to form a larger computation graph, forθ ∧ φ.

Figure 5: Computation graph for logical conjunction.

The computation graph shown in Figure 5 for conjunction trivially

satisfies the first semantic invariant, but can fail the second if the input and result

sets for the two component graphs do not synchronize correctly. For example, if

A ={x} and Q θ={y} (meaning that x is absent fromθ’s output relation), andB ={y}

andQ φ={x}, then the graph is not even syntactically correct, because the incoming

arcs to the union node have different signatures ({} for the upper arc, and {x} for

the lower). Moreover, the second invariant cannot be satisfied, because y must be a

column in either the domain or range off θ∧φ, but it is in neither forf G .

t

I (l, I , Q)

L

f

I

tθ φ

O θ
f

θ t

f

A

φ t

f

B

Computation
graph forθ.

Computation
graph for φ.

Computation
graphG for θ ∧ φ.

www.manaraa.com

105

The semantic correctness of this first construction, and of the remaining

ones, depends on certain syntax rules being met. Some of the syntax rules pertain

to the individual constructions. (Indeed, each graphical construction is a kind of

syntax rule.) There are a few syntax rules that apply to all of the constructions.

These are worth stating now. Notice that the descriptions of the nodes in

Section 6.1 show how to calculate a signature for each node’s outgoing arcs, given

signatures for its incoming arcs. Because a computation graph is acyclic, it is

trivial to run this calculation from the start node to the success and failure nodes.

Each rule below constrains the nature of a node, sometimes in terms of the

signatures on its incoming arcs, or the rule asserts some syntactic relationship

between a graph and the program specification from which it is derived.

General Syntax Rules for Computation Graph Construction

(1) Recursive literals must be positive: Recursive literals may not be negated, nor

may they appear in the conditional part of an if–then–else, nor in the conditional

part of a universal quantification construct. (These constructs are described

below.)

(2) Input signatures to the union node: Input relations to union nodes must have the

same signature.

(3) Input signature to the deallocate node: The signature of the input relation to the

deallocate node must contain the node’s signature. (These first three rules were

adumbrated above.)

(4) Correct start, success, and failure node signatures: The signature calculated

for the arc leading to the success node must beQ P. The annotation on the start

node and the signature calculated for the arc leading to the failure node must beI P.

The remaining rules apply to the literal and recursion nodes. Recall that these nodes

are annotated with a literal,l, and two signatures, theinput arguments, A , and the

result arguments, B .

(5) Consistency of annotations: The union ofA andB must equal V(l), the variables

in the literal,l. Each variable inB – A (the output arguments) andA – B (the

destructively consumed input arguments) must appear exactly once as an actual

argument ofl. (The input arguments, variables inA ∩ B , can appear multiple

times, and can appear embedded in terms that are arguments tol.)

(6) Adequate input: The signature of the incoming arc must containA .

www.manaraa.com

106

(7) Write once: The signature of the incoming arc must not intersectB –A . (B –A is

the output set for the node.)

These rules winnow the set of computation graphs that would otherwise

be constructed from a program specification. In essence, they insist on a consistent

order of computation, so that variables are not assigned multiple values and are

assigned values before they are used as inputs. Given these rules, the construction

shown in Figure 5 easily satisfies the semantic invariants, sinceθ generates values

for some columns that are joined to the initial tuple t, andφ joins new values to the

result. Bothθ andφ may take away columns, but only from the original input tuple.

Thus, the output is some projection of t[θ] [φ], and so the computation graph

preserves the denotation of the formula.

The construction for disjunction is very similar to that for conjunction.

Instead of the two component graphs being chained along success arcs, leading to

the success node, they are chained along failure arcs, leading to the failure node.

This construction is shown in Figure 6, below. For similar reasons, it maintains the

semantic invariants if the general syntax rules are met.

Figure 6: Construction for disjunction.

The construction for if–then–else, shown in Figure 7 below, combines

elements of both previous constructions, as one would expect, sinceθ ⇒ φ ∇ ϕ is

equivalent to(θ ∧ φ) ∨ (~θ ∧ ϕ). In fact, this construction subsumes both

conjunction (by settingϕ=F) and disjunction (by settingφ=T). For similar reasons,

it satisfies the semantic invariants.

I

tθ

φ

f

Computation
graph forθ ∨ φ.

www.manaraa.com

107

Figure 7: Construction for if–then–else.

An existentially quantified formula is implemented by a computation

graph that produces a result tuple that satisfies the inner formula, and that then

“forgets” the quantified variable. This is analogous to function skolemization. The

computation graph is shown in Figure 8 below. By swapping the success and

failure nodes, this construction realizes ~(∃X)θ. This latter requires thatX have as

output variables precisely those inX .

Figure 8: Construction for existential quantification.

Universal quantification is also treated constructively. Only an if–then

formula can be universally quantified. The conditional component generates

values for the quantified variables, and the consequent must hold for all of these

values. The universal quantification node is used to “turn off” the results from the

consequent if the consequent fails for any of the values generated by the

conditional. The construction for universal quantification is shown in Figure 9

below.

Figure 9: Construction for universal quantification.

I

tθ φ

Computation
graph forθ ⇒ φ ∇ ϕ.

ϕ

f

O φ

θ t

f

A

Computation
graph for(∃X)θ.

X
θ

t

f

A

Computation
graph for∼(∃X)θ.

X

A

A

X

tθ φ

Computation graph
for (∀Y)(θ ⇒ φ).

f

Y

Y

X∪Y

X ∪Y∀
X

www.manaraa.com

108

There are three sets of variables involved in the construction, identified

by the signaturesX , Y, andZ . X is the signature of the initial tuple. The

conditional component,θ, of the if–then–else generates values forY. The

consequent,φ, generatesZ tuples for eachX Y tuple. For each input tuple, the

universal quantification node “turns off” the output to the success node except for

Z tuples that are generated for allY tuples. For any initial tuple, if there are no

qualifyingZ tuples, the initial tuple takes the failure arc out of the consequent.

Thus, the meaning of the failure node and the preservation of logical semantics are

preserved for the success path out of the conditional.

The alternative,ϕ, generatesZ tuples when there is noY tuple that

satisfies the conditional for the initialX tuple. This is usually used to generate

default values for theZ variables. It trivially satisfies the semantic invariants.

Recursion

The discussion of the above constructions, excluding recursion, can be

summarized in a lemma.

Lm. 10 The syntax rules and the non-recursive constructions yield
computation graphs that preserve the semantic invariants. In particular, any
computation graph so constructed has the same semantic map as the
program specification from which it is derived.

When the nodes were explained, the precise semantics of the recursion

node was finessed, with reference to a later explanation. It is now time to give a

more precise definition of the semantics of the recursion node, and to show that it

preserves the semantic invariants. As was done for recursively defined predicates

in Section 4.3, a least fixed-point semantic is defined below for computation

graphs.

Given a recursion node r annotated with input variablesA , output

variablesB , and literall (whose predicate isp), definef r
0: ¶A → 2¶B by f r

0(a)={}.

Notice that in building up the least fixed-point for recursively defined predicates,

[φp]↑0 is defined to be empty. Definef r
i+1 to be the denotation of any computation

www.manaraa.com

109

graph forP, when recursive nodes in it are assigned the denotationf r
i. (If the

construction rules do not provide a computation graph forP, then there is no point

in assigning a denotation to its recursion node.) The important claim is that this

series of denotations for the computation graph tracks the series whose limit isP’s

denotation.

Lm. 11 b∈f r
i(a)⇔ a·b∈ [φp]↑i

Proof That this is true for i=0 provides the basis for an induction. Since
the non-recursive nodes preserve semantic meaning and because [φp]↑(i+1)
is defined as one non-recursive application ofp, the inductive step holds.

Sincef r
i tracks [φp]↑i, it is also a monotonic sequence, and has the

same least fixed-point.3 This least fixed-point is the denotation assigned to the

recursion node. Because it is a fixed-point, it has the same denotation as any ofP’s

computation graphs, and this is the denotation ofP. This proves the desired

generalization of Lm. 10:

Thm. 12 If the computation graphG is constructed fromP applying the
construction and syntax rules, thenf G = f P, i.e., the upper triangle in
Figure 1 commutes.

6.3 Augmenting Computation Graphs with
Control Information

The graph constructions described in the previous section follow from

the logical construction of the specifying formula and, with two exceptions,

provide exactly the same information as the corresponding procedure composition.

These exceptions are non-recursive literal nodes and the construction for

disjunction. The former construction lacks any information about what procedure

is used to realize the literal, and what its semantic description is. The latter

3 It is easy to prove that a computation graph has a least fixed-point denotation, without
referring toP’s least fixed-point, but their equality would then have to be proved
separately.

www.manaraa.com

110

construction corresponds toeither the choiceor the concatenate procedure

operations.

Note that each disjunction corresponds to a unique union node in the

computation graph. Anaugmented computation graph adds additional annotations

to union nodes and literal nodes. It adds to each union node (1) an indicator of

whether the choice or concatenate operator is desired, and to each literal node (2)

the name of the procedure chosen to realize the literal, and (3) the procedure’s

semantic description. For each literal node, the chosen procedure must have an

input signature and result signature that matches those of the literal node.

There is an exact correspondence between procedure compositions and

augmented computation graphs. Given an augmented computation graph, the

procedure composition is obtained by deconstructing the graph, and applying the

corresponding procedure composition for each graph construction. At

disjunctions, where the only choice of procedure compositions obtains, the

annotation of the union node tells which to make. At literal nodes, their annotation

tells which named procedure belongs at that place in the procedure composition.

The reverse process generates a computation graph from a procedure composition.

This suggests a compilation algorithm that is an alternative to the one

presented in Section 5.3. It is sketched below, at a very high level:

1: construct ComputationGraph;

2: f ind ControlInformation to satisfy ProgramSpecif ication;

3: perform Fixups & Optimizations;

4: convert ComputationGraph to ProcedureComposition.

The next section describes an algorithm that modifies the computation

graph for memory management. Its role is in step 3 of the above algorithm.

6.4 Memory Management

The compilation algorithm described in Section 5.3 will fail on

programs that have consumed input arguments. It make no provision for

www.manaraa.com

111

deallocating these variables on the successful termination of the composed

procedure. This is remedied below, through adjustments to the computation graph.

To adjust a computation graph for the desired result signature, a deallocation node

is inserted before the success node that discards the consumed input variables.

This is shown in Figure 13, below.

Figure 13: Construction for consumed input arguments.

This does not yet solve the problem. The deallocation node requires a

procedure that deallocates the variable. (In terms of the procedural calculus, a

deallocate node is equivalent to a projection procedure. See Section 5.2.) Several

related problems arise.

• The compiler contains built in procedures to deallocate variables whose sort does

not contain pointer references or sets. (For obvious reasons, the compiler cannot

include procedures to deallocate non-contiguous data structures.)

• There may be a literal in the program’s body that is only realized by a procedure

that consumes an input variable. (This may be where the programmer intended the

deallocation of a non-contiguous data structure to occur.) The deallocation node

placed at the end of the composition graph in Figure 13 somehow must be

percolated back to the literal that needs to deallocate its input variable.

• When there is a choice between a procedure that consumes an input invariable and

one that does not, if the variable must be deallocated anyway, then it is more

efficient to do the deallocation “deeper” in the program by choosing the procedure

that consumes its input variable.

One literal that often may and sometimes must consume one of its input

variables is data structure isomorphism. The compiler realizes data structure

isomorphism (1) by copying a data structure, or (2) by destructively updating a

data structure. The latter is clearly more efficient. The former is possible only

when the data structure is contiguous or when the programmer has written a copy

constructor for the data structure of concern.

t

f

D
Augmenting a computation
graph for consumed inputsD .

www.manaraa.com

112

If a literal node appears immediately prior to a deallocate node, then

deallocated variables that are pure inputs to the literal can be removed from the

deallocate node and made consumed inputs on the literal node. This is shown in

Figure 14, below. Deallocation is pushed into the procedure that realizes the

literal. (In particular, this would turn data structure isomorphism from a copy into

a destructive update.) Obviously, this should be done only if the procedure library

has a procedure that consumes the concerned variable. Any deallocate node that is

left with an empty signature can be moved from the graph.

Figure 14: Creating literals with consumed input arguments.

To make effective use of procedures that consume their inputs,

deallocate nodes, especially the one placed at the end of the computation graph as

shown in Figure 13, should be pushed as far toward the front of the graph as

possible. In doing this, certain constraints must be followed. First, a deallocation

node cannot be pushed past a node that makes use of its variable. Failing to meet

this constraint would commit the programming mistake of using a variable after it

was deallocated! Once a deallocation node is pushed forward to a previous node

that uses the same variable, it may be at the point where it can be eliminated by

realizing the previous node through a procedure that consumes the variable, as

shown in Figure 14. Second, if a deallocate node is pushed forward of a union

node, it must be replicated along all incoming paths. Failure to meet this constraint

would commit the programming mistake of deallocating the variable along some

paths of execution, but not along others. Third, to be pushed past a node with

multiple output arcs, the deallocation node must be present on all those output

arcs. (This is the converse of the previous constraint.)

The algorithm below pushes variable deallocation as far forward as

possible. This maximizes the amount of destructive update that is possible. The

algorithm assumes that each deallocation node concerns exactly one variable. (If a

deallocation node has several variables, it can be turned into a sequence of

deallocation nodes, each with only one variable.) The algorithm marks

(l, I , Q)

L

Z (l, I , Q–A)

L

Z – A

Before adjustment: After adjustment:

A ⊆ I ∩ Q

Prerequisite:

www.manaraa.com

113

deallocation nodes as they are processed. Each node’s mark is eitherReady,

meaning that it can be pushed,Wait , meaning that it has been pushed as far as

possible until other deallocation nodes are pushed, andDone, meaning that the

node cannot be pushed any further.

OptimizeDeallocation () { // The graph is a global variable

node DeallNode;

MarkAll (Ready);

while (ChooseReadyDeallocNode (DeallNode))

Push (DeallNode);

}

// The function below pushes a single node forward

Push (DeallNode) {

varName x = Signature (DeallNode);

node CNode = PreviousNode (DeallNode);

if (VarUsedInNode (CNode, x))

Mark (DeallNode, Done);

else if (NbrOutArcs (CNode) > 1) {

if (all nodes on out arcs are same deallocate) {

RemoveFromGraph (all nodes on out arcs);

Insert (DeallNode, InArc (CNode));

}

else Mark (DeallNode, Wait);

else if (NodeType(CNode) == Union) {

RemoveFromGraph (DeallNode);

for (each Arc leading to CNode) {

new node NewNode;

NewNode = Insert (DeallNode, Arc);

Push (NewNode);

delete (DeallNode);

}

else {

RemoveFromGraph (DeallNode);

Insert (DeallNode, InArc(CNode));

CNode = PrevNode (CNode);

www.manaraa.com

114

}

}

The first else if merges a set of deallocation nodes (for the same

variable) that occupyall the outgoing arcs of a node. This latter node has multiple

outgoing arcs and, because of this, it blocks the forward progress of any lone

deallocation node that is pushed forward to one of its outgoing arcs. The

deallocation nodes that are pushed forward to the blocking node, prior to the one

that reaches the last outgoing arc, must wait for this merger. The second else if

replicates a deallocate node on all the incoming arcs to a union node.

6.5 Reasoning on Computation Graphs

Reasoning about Galois programs as a whole is easy. If a program

successfully executes, then the values bound to its arguments satisfy the formula

that the program realizes, i.e., the postcondition in its specification. If a Galois

program fails, then there are no result values that, together with the input values,

satisfy the postcondition.

The problem is that it is sometimes necessary to reason aboutpart of a

Galois program. The computation graph intuitively displays the order of

computation in a program. It incrementally makes true parts of the postcondition,

until the postcondition is either satisfied as a whole, or the computation cannot

proceed. The notion of what “is made true by the computation graph up to a certain

point” is formalized below. This helps programmers to understand how

prerequisite assertions are constructed, and how to modify predicate definitions to

achieve desired computations. We assume, in the exposition below, that deallocate

nodes for consumed input variables have not yet been propagated forward.

The Arc Invariant

Section 6.1 defined a relational map,f e, for each arc e in a computation

graphG . For each input tuple i to the computation graph,f e(i) is a relation

assigned to the arc e. If e is incoming arc to the success node, thenf e is the

www.manaraa.com

115

semantic map assigned to the graph as a whole,f G . Thm. 12 states thatf G is the

same as the semantic map for the program specification from whichG derives.

No special meaning was assigned tof e for arcs other than the one that

leads to the success node; they were merely intermediate steps in the calculation.

The task now is to define a logical formulaΦ for each arc e, such that ƒΦ=f e. Φ is a

logical description of the arc’s relational map, and hence, describes what can be

assumed of the input tuples to its target node. In short, this formula describes

“what has been made true” up to that point in the computation graph. It is called

the arc’sinvariant.

As a starting point, if e is the arc leading from the start node, then define

Φe=True . As with the definition off e, Φe is calculated in a depth-first fashion

along the computation graph. At any node, let e be an outgoing arc and assume that

Φd is available for each of the incoming arcs, d. The following rules determineΦe

(the invariant for the outgoing arc).

Branch node:Φe = Φd. The invariant on each outgoing arc is identical to that on the

incoming arc.

Union node:Φe = ∨d Φd. The invariant on the outgoing arc is the disjunction of the

invariants on the incoming arcs.

Universal quantification node:Φe = (∀Y)Φd. The invariant on the outgoing arc is

the universal quantification of the invariant on the incoming arc, over the

quantified variables that annotate the node.

Deallocate node:Φe = (∃Y)Φd. The invariant on the outgoing arc is the existential

quantification of the invariant on the incoming arc, over the quantified variables

that annotate the node.

Literal and recursion nodes:Φe = Φd ∧ L and Φe’ = Φd ∧ (∀Z)(~L). The invariant

on the success arc is the conjunction of the invariant on the incoming arc with the

literal that annotates the node. The invariant on the failure arc is the conjunction

of the invariant on the incoming arc with the negation of the literal that annotates

the node, universally quantified over the literal’s output variables.

The logical compositions above are precisely those for which the

corresponding relational compositions in Section 6.2 provide a model. There is no

need here to make special provisions for recursion, since the model of recursively

www.manaraa.com

116

defined formula is already well defined. Relying on Thm. 12, the following holds.

Lm. 15 If the computation graphG is constructed from a program
specificationP applying the construction and syntax rules given in the
previous sections, then for each arc e, ƒΦ=ƒe.

Note that the signature of e is precisely the set of free variables ofΦe.

An assertion is said to hold at a node with unique incoming arc e if the assertion

can be derived from the logical axioms, the precondition in the program

specification , and the arc invariantΦe. Any such assertion is satisfied by any of

the tuples inf e(i), for any initial tuple i that satisfies the precondition from the

program specification .

The Preconditions for a Literal Node

A procedure chosen to realize a literal, whether a previously compiled

Galois program or primitive procedure built into the compiler, may require a

certain precondition to hold on its input tuples. It suffices for the precondition to

hold at the concerned literal node. (See Figure 16.)

Figure 16: The effects of a literal node’s precondition.

In short, to verify the concerned literal node with preconditionα, the

programmer must prove(Θ∧Φ)⇒α, whereΦ is what the computation graph has

made true up until the concerned node, andΘ is the precondition from the

program’s specification. The conjunction of all assertions of this form for all nodes

in the computation graph is precisely theprerequisite assertion calculated in

Chapter 5. Being able to see these assertions individually, at the concerned

locations in the graph, helps the programmer understand from whence they derive

and how changes in the program specification or predicate’s definition will affect

the prerequisite assertion.

some node x with

arc ewith

Program’s
precondition isΘ.

preconditionα

invariant Φ

For x, need:(Θ∧Φ)⇒α

L

www.manaraa.com

117

7. Producing C Code

Procedural semantics can be discussed precisely and fully without

reference to a particular implementation. The compilation algorithm in Chapter 5

generates a program in the form of a procedure composition in the procedural

calculus. Chapter 6 describes an equivalent graphical representation, the

computation graph. Both representations of a program fully describe its behavior.

Compilers are often divided into a front-end that turns input in the

source language into an intermediate form, and a back-end that produces code in

the target language from this intermediate form. This latter step is often the easier

of the two. The Galois compiler puts more distance than usual between the front-

end and back-end, because verifying the prerequisite assertion (and possibly

rewriting the postcondition) are necessary steps between front-end compilation

and back-end code generation.

The major parameters for a back-end are what language to target, what

calling conventions to use, and how to represent data in the target language. To

illustrate the conversion of logic into code, this chapter describes code production

in C. The back-end described here is meant to serve as an example of code

production and provides the context for the examples. The C code is not highly

optimized.

Figure 1: The role of code production.

The code produced by the back-end for any procedure s must have a

concrete behavior that mirrors the abstract behavior defined for s. In other words,

the back-end described in this chapter generates from each procedure s a C

input tuple s output sequence

conventions
for data

representation

input arguments C function output sequence

code
production

conventions
for data

representation

www.manaraa.com

118

function that causes the diagram in Figure 1 to commute.

The target language is C as described by the second edition of the

classic text by Kernighan and Ritchie [29]. It makes use of several of the “new-

style” conventions. (Refer to Appendix C of [29].) In particular, the type of

function arguments are declared directly in the argument list of the function

header, and generic pointers are given the typevoid* . One exception is made:

comments are written in the style of C++, in order to avoid clutter in the

presentation.

7.1 Skeleton Code for Programs

The narrative below describes how code is produced for a logic

program “from the outside-in.” That is, given a procedure composition, in the form

of an expression in the procedural calculus or of a computation graph, code

production begins with the outermost composition, it generates skeletal code for

this composition, remembering where unfinished “holes” corresponding to

components of the procedure composition remain, and it then repeats this process

on the components, filling in the “holes.” The outermost shell is the skeleton for

the C function that implements the logic program:

int ProgName (argument list)

{

definition of G_success;

definition of G_stop;

// .. generated code for ProgName

}

The skeleton above demonstrates several conventions that are followed

in the following presentation. First, in presenting code production, we use the C++

convention for comments, i.e., everything from “// ” to the end of the line is a

comment. Second, a line that contains only a comment that begins with an ellipsis

(..) denotes a “hole” to be replaced by further generated code. The comment can

be viewed as a placeholder that indicates what code will replace it. For example, in

the skeleton above, the comment “// .. generated code for ProgName ” will be

www.manaraa.com

119

replaced by the code generated for the procedure composition that implements the

specified program. Third, italics are used to indicate code that varies according to

some rule that will be explained in the text. For example, the definition of

G_success andG_stop are shown in more detail later, when two more specific

versions of the function skeleton are explained. Fourth, variables that are artifacts

of code production — as opposed to representing logical variables — are prefixed

by G_. These variables are summarized at the end of Section 7.2.

Every program contains the variableG_success , which is initialized to

true in C’s fashion of dealing with booleans — i.e., to 1 — and the variableG_stop ,

which is initialized to false — i.e., to 0. The variableG_success can be interpreted

roughly as answering the question: it still possible for the program to generate

another result tuple that satisfied the program specification? The variableG_stop

can be interpreted roughly as answering the question: should execution break out

of the current generator? The use of these variables will be explained further as

this chapter proceeds.

Data Representation

Values in the basic sorts are represented by C data types as described in

the table below.

Galois sort C type

integer & int int

address & addr void*

character & char char

floatingPt & float float

sort[] type[]

sort{} objects of the corresponding type
allocated in the heap

struct samestruct without set fields

www.manaraa.com

120

In C, there is no need to distinguish between the base sorts and their

corresponding addressed sorts. Thus, values in both theinteger sort and theint

sort are represented in C by anint . The correspondence between the logic’s sorts

and C’s types has been made straightforward.

Variables in the code are eitherdirect or indirect. All destructively

consumed input arguments, output arguments, and existentially quantified

variables of an addressed sort are indirect, and are declared with one level of

indirection beyond that in the above table. In other words, their declarations are

type* rather than justtype as shown. When an indirect variable is passed to a

direct argument, it is dereferenced in the procedure invocation. Direct variables

are never passed to indirect arguments.

Two Kinds of Programs

For the purpose of code production, programs are categorized as

generators or non-generators. Generators are programs that potentially produce

more than one output tuple for each input tuple. Hence, generators are complete

programs, excluding functions. (Complete programs produce all output tuples that

satisfy their logical formula. A function is complete, but is known to have at most

one output tuple for each input tuple.) Non-generators produce at most one output

tuple for each input tuple. These are effective programs and function programs.

The code produced for a program takes one of two forms, depending on

whether or not the program is a generator. A generator has an initial, integer

argument,G_first , that, if non-zero, indicates that the program should generate

the first output tuple for the passed input tuple. (See Section 5.4 for a discussion of

program execution.) If this argument is zero, the program generates the next output

tuple in the sequence. This argument is passed by reference, and is always returned

equal to zero. The skeleton of the C function that implements a generator program

is shown below in detail:

int ProgName (int* G_f irst, predicate arguments)

{

static int G_success;

www.manaraa.com

121

static int G_stop;

if (!G_f irst) goto Inside;

G_success=1;

G_stop=0

// .. f irst part of procedure composition for ProgName

// Success continuation of ProgName:

return G_success;

// Output deallocation unnecessary (read below)

Inside:

// .. remainder of procedure composition for ProgName

return 0;

}

All programs are implemented as integer-valued C functions that return

one when they generate an output tuple and that return zero when there is no

qualified output tuple, or in the case of a generator, no further output tuples. As the

above skeleton shows, a generator program retains state between invocations that

determines its location in the output sequence. Note the difference in the

declaration of internal variables between the skeleton above for a generator

program and the skeleton below for a non-generator program.

int ProgName (predicate arguments)

{

int G_success=1;

int G_stop=0;

// .. body of ProgName

return (G_success);

}

In a generator program, all variables (except the function’s arguments)

are declaredstatic . Because of this, they are initialized through explicit

initialization statements rather than in their definition. For simplicity, the

remaining exposition of code production assumes that code is produced for a

program that isnot a generator. When similar fragments are produced for a

program that is a generator, the only differences are (1) that variables are declared

static , and (2) variables are initialized by an assignment statement immediately

following their definition, rather than in the definition itself.

www.manaraa.com

122

The predicate arguments are the arguments in the logical definition of

the predicate that the program realizes. These are declared with the types

previously described. Consider a program whose specification isdoIt (in x,

inx y, out z) , that realizes some predicate whose arguments arex, aninteger , y,

a structure namedfoo , andz, a structure namedbar . The code generated for a

program that realizes this specification would have the following function header:

int doIt (int x, foo* y, bar* z)

Note thaty andz are declared with one level of indirection, becausey is

a destructively consumed input argument, andz is an output argument.

7.2 Code for Procedure Compositions

Once the C function’s skeleton is in place, code production proceeds for

the procedure composition. Each procedure is turned into fragments of code that

are fit into the framework of the code that has been previously generated. There are

two general forms for the code that is produced for a procedure. If the procedure s

is complete, it is implemented as two code fragments that surround asuccess

continuation:

// .. first part of s
// .. success continuation

// .. deallocation of output variables of s

// .. remainder of s

The success continuation is a hole that is filled by appropriate other

procedures. The code in the success continuation is executed repeatedly as the

complete procedure iteratively produces qualified output tuples for the formula it

realizes. The code in the success continuation can force an early break out of the

iteration by settingG_stop to 1.

Each successful iteration through a successful procedure must rid itself

of its output variables after the success continuation is executed. In the case where

the success continuation is a return to a calling program, it is the calling program’s

responsibility to consume the output values. (This was noted in the code shown

www.manaraa.com

123

above for the skeleton of a generator program.) Note, also, that the variable

allocation may have been pushed into the code in the success continuation, by the

algorithm described in Section 6.4. Failing these two exigencies, the output

variables of a complete procedure must be deallocated where shown above.

A procedure that is effective is implemented by one fragment of code:

// .. body of s

When execution exits this fragment of code,G_success is 1 if an output

tuple has been produced, and 0 if there is no qualified output tuple. Both forms

assume thatG_success is set andG_stop is not set on entry.

Program Invocation

Atoms are realized either by invocation of C functions that were

produced by compiling other programs, or by fragments of code1 known to the

compiler for implementing the primitive predicates. In either case, the code must

fit into either the form defined for complete procedures or the form defined for

effective procedures. The set of stock implementations of the primitive predicates

is discussed later. A generator program (which is necessarily complete) is invoked

as shown below.

// Complete use of a generator, ProgName

{

int G_f irst = 1;

int G_loop;

// .. evaluate input arguments

G_loop= ProgName (&G_f irst, actual arguments);

while (G_loop) {

// .. success continuation

if (G_stop)

G_loop=0;

else

1 In the prototype compiler, these fragments are embedded in macros, whose use in
generated code looks very much like function invocation.

www.manaraa.com

124

G_loop= ProgName (&G_f irst, actual arguments);

}

}

The comment “.. success continuation ” marks the spot for code that

is executed at the continuation of the procedure, as required by various

compositions described below. The code above this comment replaces a comment

of the form “.. first part of Progname ”. The code below comment replaces a

comment of the form “.. remainder of Progname ”. Thus, this code fits the

general form for complete procedures.

A fragment of code that evaluates input arguments is necessary if

logical functions are employed in the terms of the atom that the compiler

implements through code more complex than a C expression. (In this case, there

may be more internal variables.) Input arguments need only be evaluated once,

because the input tuple does not change as successive output tuples are generated.

The variableG_first is used to signal the first invocation of the

program for the concerned input tuple. The variableG_loop is used to control the

iteration through result tuples. In any one program, there may be many instances of

these variables, which are distinguished by the block scope in which they reside.

The invocation of a non-generator program is much simpler:

// Effective use of a non-generator

// .. evaluate input arguments

G_success = ProgName (actual arguments);

This fragment of code replaces a comment of the form “.. body of

ProgName”, and so it satisfies the general form for effective procedures. A

recursive program is invoked where recursion occurs using the form above. Recall

that recursive programs are never generators.

A program that realizes a function is both complete and effective.

Because it is not a generator, it can be invoked as above for use as an effective

procedure. To be used as a complete procedure, it is invoked as shown below.

// Complete use of a called function

www.manaraa.com

125

// .. evaluate input arguments

if (ProgName (actual arguments)) {

// .. success continuation

}

This fits the general form of a complete procedure, even though it is

known ahead of time that the success continuation executes at most once.

Disjunction

The generated code for the effective realization of disjunction, s⊗t, is

trivial. Both component procedures are effective.

// Disjunction (s⊗t)

// .. body of s

if (!G_success) {

G_success=1;

// .. body of t

}

In short: do s; if it fails, try t. In contrast, the complete implementation

must generate all results for s and then all results for t. The code shown below

combinesK complete procedures into a complete disjunction.

// Disjunction, generator: s⊕t⊕...

{ int G_branch = 0;

int G_loop = 1;

while (G_loop) {

switch (G_branch) {

case 0:

// .. f irst part of s

goto Or_Success_ N;

Or_Back_ N_0:

// .. remainder of s

break;

case 1:

// .. f irst part of t

goto Or_Success_ N;

www.manaraa.com

126

Or_Back_ N_1:

// .. remainder of t

break;

...

case K:

// .. f irst part of last disjunct

goto Or_Success_ N;

Or_Back_ N_K:

// .. remainder of last disjunct

break;

default: error ("Error in generated code\n");

}

if (G_branch++>=K) G_loop=0;

continue; // while (G_loop)

Or_Success_ N:

// .. success continuation of s⊕t⊕...

if (G_stop) break; // from while (G_loop)

switch (G_branch) {

case 0: goto Or_Back_ N_0;

...

case K: goto Or_Back_ N_K;

}

} // while (G_loop)

}

The variableG_branch keeps track of which component procedure is

currently generating result tuples. When all have run their course, thewhile loop

terminates, and execution falls out of the code fragment. The labelOr_Success_N

serves as a single point where the success continuations for all the disjunctive

components are combined into one.

N is a number that serves to keep distinct the labels used in the code

produced for different disjunctions. Other compositions shown below also require

a distinguishing number. A single global “ticket teller” is used during code

production for a program to generate a sequence of unique numbers. This is a

common method for generating unique names in the back-end of a compiler.

www.manaraa.com

127

Conjunction

The first case for conjunction combines two complete procedures to

produce a complete result. It simply nests the code for the second procedure within

the success continuation for the first. Recall from the table in Lm. 14 of Chapter 5

that the inner procedure must terminate.

// Conjunction, complete: t(s)

// .. f irst part of s

// Success continuation of s:

// .. f irst part of t

// .. success continuation of (t(s))

// .. remainder of t

// .. remainder of s

In the second case for conjunction, a complete procedure and an

effective procedure are combined to produce an effective procedure.

// Conjunction, effective from complete: t(s)

// .. f irst part of s

// .. body of t

if (G_success) G_stop=1;

// .. remainder of s

if (G_stop)

G_stop=0;

else

G_success=0;

The code fragment above is the first example whereG_stop is set to

break out of a complete procedure’s iteration. Notice thatG_stop is reset outside

the scope of the complete procedure whose iteration is interrupted. The complete

procedure can be produced by any of the code fragments described in this chapter

for complete procedures, including the previous fragments for composing

complete conjunctions and disjunctions. They all cause execution to fall all the

way through whenG_stop is set.

A special case deserves mention. The code fragment above can be used

to turn a complete procedure into an effective procedure when the body of t is

www.manaraa.com

128

empty, i.e., when t realizes the formulaTrue . BecauseG_success is set on entry,

the if statement forces an exit from the iteration when the complete procedure

returns its first result tuple. This special case is shown below:

// Conjunction, effective from complete: t(s)

{

int G_f irst = 1;

int G_loop;

// .. evaluate input arguments

G_loop= ProgName (&G_f irst, actual arguments);

while (G_loop) {

if (G_success) G_stop=1;

if (G_stop)

G_loop=0;

else

G_loop= ProgName (&G_f irst, actual arguments);

}

}

if (G_stop)

G_stop=0;

else

G_success=0;

While the code above works, and allows a generator program to be used

as an effective procedure, it can clearly be optimized. The final case for

conjunction creates an effective procedure from an effective procedure for t and a

total function s:

// Conjunction, effective from effective & total fn: t(s)

// .. body of t

if (G_success) {

// .. body of s

}

Because s is a total function, it never fails. Assignments are the most

common total functions.

www.manaraa.com

129

Existential Quantification & Negation

Existential quantification is implemented as a block that provides scope

for the quantified variables, and definition of those variables at the beginning of

the block. The general form is:

// Existential quantif ication: (∃A) ϕ
{

// .. declare quantif ied variables

// .. body of effective procedure that realizes ϕ
// .. deallocation of quantif ied variables

}

The variables are indirect, meaning that they are declared as pointers.

The actual allocation of an existentially quantified variable occurs when it is given

a value, either as an output variable from a procedure, or within a primitive

predicate. The actual deallocation occurs where the algorithm of Section 6.4

decides. As discussed there, and below in Section 7.4, deallocation can occur

through use as a destructively consumed input argument, through destructive

updatevia data structure isomorphism, or simply by reaching the end of the scope.

Only an effective procedure that has no output variables can be negated.

(Of course, a complete procedure can be turned into an effective one, as described

above, and output variables can be shed through existential quantification.)

Negation merely complements the boolean variableG_success :

// Negation: !s

// .. body of s (no output variables)

if (G_success)

G_success=0;

else

G_success=1;

Universal Quantification

Universal quantification of an implication —(∀i)(ϕ(i) ⇒φ(i)) —

combines a complete procedure that generates all the values to be tested and an

www.manaraa.com

130

effective procedure that tests these values into an effective procedure that succeeds

if all the generated values pass the test. The code for this is shown below.

// Universal quantif ication of implication: s/ A t

{

// .. def inition of quantif ied variables, A

// .. f irst part of s

// Success continuation of s:

// .. body of t

if (!G_success) G_stop = 1; // failed

// .. remainder of s

if (G_stop) {

G_stop=0;

G_success=0;

}

}

Like existential quantification, universal quantification introduces a

new block in which the quantified variables are active. Unlike existential

quantification, the variables are direct, and are automatically deallocated by the C

machine at the end of the block. As was seen with conjunction,G_stop is set to

break out of a complete procedure’s iteration, and is reset outside the complete

procedure’s scope.

Summary of Code Production

The exposition above describes code production for all procedure

compositions discussed in Chapter 5 and Chapter 6. All that remains is to describe

the implementation of primitive predicates. As promised, the variables that are

artifacts of code production are summarized in the table below.

Variable C scope Purpose

G_success function Indicate success or failure of an effective
procedure.

G_stop function Break out of complete procedure’s iteration.

www.manaraa.com

131

7.3 Functions and Base Predicates

The programming environment must provide an initial procedure

library, with procedures that realize the predicates of the base logic. Each predicate

may have several realizations, with the corresponding procedures having different

argument modes or semantic properties.

The back-end must also produce code for the functions in the logic.

This is required when a literal is realized, since the input arguments to the literal

can be arbitrary terms.

This section describes the implementation of the logic’s functions and

base predicates. The realization of base predicates for data structures, just like

other procedure compositions, can require that assertions in the logic hold true in

order for their semantic properties to obtain. Some of the realizations of the data

structure predicates allocate memory, and others perform destructive updates.

Primitive Sorts

The back-end generates code for all the functions on the base sorts and

the primitive data structure sorts. In other words, the compiler generates code that

evaluates any term invoving only these sorts. These functions are the basic

functions for arithmetic and character string manipulations. The concerned

predicates for these sorts are equality and inequality comparison. These predicates

G_loop block Control complete procedure’s iteration.

G_first block Indicate whether an invocation of a complete
procedure is first or later for an input tuple.

G_branch block Indicate current component of complete
disjunction.

Variable C scope Purpose

www.manaraa.com

132

are realized as described below.

= Realized as a function that always succeeds when one side is an input argument

and the other an output argument, and as an effective procedure that always halts

when both sides are input argument.

< Realized as a complete, non-looping procedure for integers when one side is an

input argument and the other side is an output argument, and as an effective

procedure that always halts when both sides are input arguments, for all the base

sorts, exceptaddress , and the primitive data structure sorts, exceptaddr . Note

that the first realization generates sorted output that is ascending if the output

argument is on the right and that is descending if it is on the left. For the second

realization, the first argument is bounded above and the second is bounded below.

The corresponding implementations are also assumed for ², >, ³, and ­,

except that ­ requires both sides to be input arguments.

Pointer Dereferencing

Pointer dereferencing is a special case, because it involves a predicate

(=) on a base sort (address), but the “output” argument is an arbitrary data

structure, to wit, the data structure that is referenced. Moreover, a pointer

dereference, unlike the other predicates, does not make a formula true, or check

that a formula is true. The form of a pointer dereference was described in

Section 3.6. It is shown below.

(∃x∈y)(&x=r ∧ ...)

The pointerr must be an input variable to this formula. In order to

dereferencer , the formula must be true. The prerequisite assertion is:

(∃x∈y)(&x=r)

The reason for this is that a pointer carries no information. When a

pointer is dereferenced, theassumption is that it points to a particular kind of data

structure, in this case, an element of a known set. The act of dereferencing does not

show the existence ofx, but rather, makes the particularx available to other

formulae within a scope, to the formulae masked by the elision (...) in the

dereference example above. In the computation graph,x is formally an output

www.manaraa.com

133

variable to the literal&x=r , since it is available after the literal’s execution. But in

this case,x is identified, rather than produced, and at the end of the existential

scope, it is not deallocated unless it is removed from the set.

Data Structure Sorts

Isomorphism, ::, is the important predicate for data structure sorts. With

both sides as input, this predicate asks whether the two data structures are

identical, modulo different mappings to memory, but with corresponding pointer

values. With one input argument and one output argument, this predicate performs

adeep copy. In this case, the input argument is often a term involving data

structure functions.

A term (other than a variable) whose sort is a complex data structure

sort is allowed only as an input argument to data structure isomorphism. Such

terms are a variable, called theunderlying variable, modified by data structure

functions as described in Section 2.7. It would be easy to straightforwardly apply

the modifying functions to the data structure instance, but in general, this is not

possible, because the underlying variable to which the instance is bound is, like all

variables in Galois, a logical variable, and therefore it cannot be modified. A value

for the term is calculated in one of two ways.

The variable can be modified! In some (hopefully, most) cases, the data

structure instance can be directly modified because the underlying variable will

see no further use in the program, and it is scheduled for deallocation, either

because it is a destructively consumed input argument, or because it is an

existentially quantified variable that will not survive beyond its scope. The next

section will describe how this is detected.

The variable is copied. The back-end can generate code to copy a

contiguous data structure instance — i.e., one that has no sets — if it can determine

the length of the arrays involved. (This is discussed below.) More generally, for

complex data structures, the programmer will have to write a program that

implements data structure isomorphism. (The programmer writes a predicate that

www.manaraa.com

134

performs operations on parts of the data structure, these being simpler operations

than isomorphism of the whole, and then verifies that the defined predicate is

logically equivalent to data structure isomorphism. This programming

methodology is discussed in Chapter 1 and Chapter 3.)

 The back-end must generate code to allocate contiguous data structure

instances both for evaluating terms, as discussed above, and also for existentially

quantified data structure variables. If the data structure instances do not involve

arrays, or if the arrays have a fixed length, then the calculation of the instance’s

size is easy. If there are arrays whose size is not known, then realization of the

concerned literal generates a prerequisite assertion as shown below.

len(array_exp) = integer_term

Here, the programmer must not only verify an assertion, but must also

supply part of it, to wit, the right-hand side (indicated byinteger_term). This is

the one case where this is required.

A similar prerequisite assertion is generated when an array is indexed or

when a subarray expression is evaluated. Then, the concerned assertion, for each

subscripting expression, is:

0²subscript_expr< len(array_expr)

Here, as usual, the assertion is fully generated by the front-end, and the

programmer only has to verify it.

Set Sorts

As described in Chapter 3, the set valued functions have only one

purpose: the control of memory management. (Memory management is discussed

in more detail in the next section.) A data structure instance can be added to a set

only if (1) it is bound to a destructively consumed input variable, or (2) it is bound

to an existentially quantified variable. In either case, the point in the computation

graph where the data structure instance is added to the set must follow every other

use of it. (Determining this is discussed in the next section.) Adding a data

www.manaraa.com

135

structure instance to a set acts to deallocate the variable to which it is bound.

Existentially quantified variables are normally deallocated because they have no

purpose outside their scope, and destructively consumed input variables are

normally deallocated because this is the specified semantic for the program.

The function that removes a data structure instance from a set can be

applied only in a data structure term that is the input argument to a data structure

isomorphism, as discussed above. The variable bound to the removed set element

is destructively consumed by the literal, and the data structure instance bound to

the variable is deallocated. Consider the formula below.

(∃x∈z.y)(&x=r ∧ w::z{ ...; y»x; ...})

This formula can be realized only if both x and y are destructively

consumed by the literalw::z{...} . Obviously, this kind of fragment is intended to

implement a destructive update ofy, where certain parts ofy are removed.

7.4 Variable Allocation & Deallocation

The code to allocate and deallocate contiguous data structures is trivial

if the amount of memory is known. A deallocate node has a precondition identical

to that described for allocation of a data structure term in the previous section, i.e.,

the length of an array must be known.

Deallocation of more complex data structure instances requires a

program that realizes data structure isomorphism, i.e., that performs a deep copy.

A program that realizes a deep copy can be automatically tweaked to deallocate its

input data structure . When it is compiled, the following changes are made. First,

every memory allocation for the output variable is pushed onto a stack. Second,

before the procedure’s successful return, it iterates through the stack and

deallocates all the concerned memory. This tweak will convert a procedurep(x,

y) , with destructively consumedx and outputy, that implementsx::y , into a

procedurep’(x) that deallocatesx.

www.manaraa.com

136

8. Compilation Examples

Two examples of compilation are presented below. The first is a simple

example that permits the workings of the procedural calculus and code production

to be followed in detail. The second example is the program doAscPtsInsert

from Section 3.5, which inserts a point into an ordered linked list. This example

uses dynamic memory, and illustrates theOptimizeDeallocation algorithm from

Section 6.4.

8.1 A Simple Example

 The example program is an array search. The predicate below

(InArray) is true of an array, upper bound, key value, and index when (1) the

index is non-negative and less than the upper bound, and (2) the indexed element

in the array equals the key value. The specified program (FindInArray) realizes

the predicate as a search for an index value.

// Def ine predicate InArray

InArray (key: int, a: int[], uprBd: int, idx: int) ⇔
(∃j: integer) (

0²j<uprBd ∧ a[j]=key ∧ idx=j

)

// Specify program FindInArray

{uprBd²len(a)}

FindInArray (in key, in a, in uprBd, out idx)

{InArray} effective, terminates.

The program specification says that the programFindInArray realizes

the predicate with all arguments as input, except foridx , which is an output

argument. It further qualifies the program with a precondition on the predicate’s

input arguments: the program will be executed only when (is guaranteed to work

only when)uprBd²len(a) . The program iseffective, meaning that it produces only

www.manaraa.com

137

one output value that satisfies the predicate. The program returns a status of

success if there is such an output value; otherwise, it returns a status of failure.

The compilation of this program is described below. In this example, we

focus on the procedural calculus, and ignore the equivalent route through

computation graphs.

Following the recursive form of theCompile procedure from

Section 5.3, begin by lettingC 0 represent the desired procedure composition. The

first logical construct is(∃j) ϕ. The procedural calculus only provides one rule for

existential quantification. So let j be the projection procedure that sets the scope

for an existential variable. Then:

C 0 = j(C 1), and

C 1 is the procedure composition that realizesϕ.

ϕ is the conjunction: (0²j<uprBd ∧ θ) . There are two rules for

effectively realizing conjunction. (See the first two rows of table in Lm. 14 of

Chapter 5.) The library contains procedures that realize the literal 0²j<uprBd

either effectively or completely, so at this point, there is no way to choose between

the two rules. Choosing the second rule would cause further compilation to fail,

because the second component of the conjunct,θ, cannot be realized as a total

function. If this rule were tried first, theCompile algorithm would backtrack to

where this rule was chosen, and then try the remaining rule. We will proceed with

the one rule that results in a successful compilation. Thus:

u is a complete realization of 0²j<uprBd , with output j ,

C 0 = j(u (C 2)), and

C 2 is the procedure composition that effectively realizesθ.

θ is the conjunction a[j]=key ∧ idx=j . This brings us to the tail of the

recursive descent, since both components of the conjunction are literals. Only the

second rule for conjunction applies toθ. The first literal is realized as a

characteristic function that is not total, and the second literal is realized as a total

www.manaraa.com

138

function whose output is idx . Thus:

t is an effective realization of a[j]=key ,

s is a total function that realizes idx=j , and

C 0 = j(u (t(s))).

The Compile algorithm calculates the precondition for a procedure

composition from the inside out. The procedure s has no precondition (or to think

of it another way, it has the preconditionTrue). The procedure t has the

precondition0²j<len(a) , which is unchanged by its composition with s. The

procedure u also lacks a precondition, but in sequential composition, it weakens

the precondition of t(s), so that the precondition of u(t(s)) is 0²j<uprBd ⇒

0²j<len(a) . The projection procedure has no precondition.

Before producing code, the prerequisite assertion must be verified.

Recall from Section 5.3 that the prerequisite assertion isα⇒β, where is the

precondition specified for the program, in this case,0²bd²ln(a) , and b is the

precondition for the procedure composition, which was just calculated: 0²j<uprBd

⇒ 0²j<len(a) . Thus, the prerequisite assertion is:

0²bd²ln(a) ⇒ (0²j<uprBd ⇒ 0²j<len(a))

In this case, the prerequisite assertion is a trivial matter of arithmetic

that is easily verified by an automatic theorem prover, so the programmer would

not have to intervene. Notice that if the program specification had lacked a

precondition, the theorem prover, equally easily, would have shown that

(0²j<uprBd ⇒ 0²j<len(a)) is not a theorem. This would force the programmer to

modify the predicate definition or to put the needed precondition into the program

specification. Whenever FindInArray is used in other Galois programs, the

compilation algorithm will insist that it is invoked with a search bound that is

within the array limits, by virtue of this being its precondition, just as the

compilation algorithm insists that array subscripting, a[j] , satisfies its

precondition for its use in FindInArray .

C code is trivially generated for this procedure composition, following

www.manaraa.com

139

the scripts in Chapter 7. First, the skeleton for an effective function is laid. Note

the one level of indirection used with the argument idx , because it is an output

argument.

int FindInArray (int key, int a[], int uprBd, int* idx) {

{

int G_success=1;

int G_stop=0;

// .. body of j(u(t(s)))

return G_success;

}

Next, a scope for existential quantification is put in. Becausej is

neither an array nor a struct , it is represented directly as a C automatic variable

and no explicit deallocation is required:

int FindInArray (int key, int a[], int uprBd, int* idx) {

{

int G_success=1;

int G_stop=0;

// Begin existential scope

{

int j;

// .. body of u(t(s))

}

// End existential scope

return G_success;

}

The procedure u is completely realized. It has a first part and a

remainder part, surrounding its success continuation. According to the

composition rule, the success continuation contains a check to exit the loop:

int FindInArray (int key, int a[], int uprBd, int* idx) {

{

int G_success=1;

int G_stop=0;

// Begin existential scope

{

www.manaraa.com

140

int j;

// Conjunction, effective from complete

j=-1;

while (!G_stop && 0<=++j && j<uprBd) {

// .. body of t(s)

if (G_success) G_stop=1;

}

if (G_stop) G_stop=0;

else G_success=0;

}

// End existential scope

return G_success;

}

The inner two procedures are effectively realized, and so they generate

very simple code. The complete C code for FindInArray is shown below.

int FindInArray (int key, int a[], int uprBd, int* idx) {

{

int G_success=1;

int G_stop=0;

// Begin existential scope

{

int j;

// Conjunction, effective from complete

j=-1;

while (!G_stop && 0<=++j && j<uprBd) {

if (a[j]==key) G_success = 1; // Code for t

else G_success = 0; // Code for t

if (G_success) *idx=j; // Code for s

if (G_success) G_stop=1;

}

if (G_stop) G_stop=0;

else G_success=0;

}

// End existential scope

return G_success;

}

www.manaraa.com

141

The scripts from Section 7.2 produce code that exhibits some awkward

passages. But except for the excessive checking of G_success , and the use of the

extra variable G_stop to break out of loops, the code above is a straight-forward

implementation of the specified program. (A good C compiler would optimize the

tests on common expressions, producing an executable that runs with respectable

efficiency.)

8.2 An Example with Dynamic Memory

Given that a program does not use dynamic memory, it can be compiled

without converting its procedural composition into a computation graph. (But as

Chapter 6 notes, there are human interface reasons to use the computation graph.)

The next example manipulates dynamic memory. The explanation of this example

will focus on this aspect of compilation. The example is from Section 3.5. It is the

specification for a program that allocates a point and inserts it into an ordered

linked list. The computation graph that results from applying the constructions in

Chapter 6 is shown in Figure 1.

www.manaraa.com

142

Figure 1: Computation graph for doAscPtsInsert prior to adjustments for
variable deallocation.

Code cannot be produced for this graph, because the variables New and

InL are not deallocated until just before the success node, implying that they are

available until then. Conflicting with this requirement, the only procedures known

to the compiler that realize the literals OutL::InL{..Pts@Pts{«New ..}}

consume both of these variables. (The compiler can automatically realize these

literals only as a destructive update to InL that also consumes New .) This

problem is alleviated by the OptimizeDeallocate algorithm from Section 6.4.

Its execution pushes the deallocation nodes forward in the graph, producing the

computation graph shown in Figure 2.

t

f

L

AscPtsSearch(InL, Pt.X, NULL, Here) Here=Null

New::Pt{Next=InL.Head} OutL::InL{Head=&Pt; Pts ≅Pts{«New}}

Here=&Hpt HPt.X­Pt.X

New::Pt{Next=HPt.Next} OutL::InL{Pts ≅Pts{«New; HPts.Next=&New}}

L

L L

L L

LL

New, InL

Procedures that realize
these predicates consume

the variables InL & NEW.

www.manaraa.com

143

Figure 2: Computation graph for doAscPtsInsert after adjustments for
variable deallocation.

In this computation graph, the deallocation nodes for the variables New

& InL appear only after the literals that must consume these variables. Following

the rule prescribed in Section 6.4, the deallocation nodes are removed. The

computation graph then meets the syntactic rules on the signatures for nodes and

arcs. In other words, variable allocation and deallocation will be handled correctly.

The resulting code is shown below. It resides in the scope of the necessary struct

definitions. Comments beginning with “// ** ” indicate how the code is changed

because of the adjustment for dynamic memory.

int doAscPtsInsert (void* InL, Point Pt, void** OutL) {

{

int G_success=1;

int G_stop=0;

// Begin existential scope

{

void* Here;

t

f

L

AscPtsSearch(InL, Pt.X, NULL, Here) Here=Null

New::Pt{Next=InL.Head} OutL::InL{Head=&Pt; Pts=Pts{«New}}

Here=&Hpt HPt.X­Pt.X

New::Pt{Next=HPt.Next} OutL::InL{Pts=Pts{«New; HPts.Next=&New}}

L

L L

L L

LL

Deallocation nodes forNew &
InL are merged with preceding

nodes that consume these vbls.

www.manaraa.com

144

Point* New; // Indirect because it is a struct

// Effective invocation of doAscPtsSearch

G_success = doAscPtsSearch

(*((PointList*)InL), Pt.X, NULL, &Here);

if (G_success) {

// Effective realization of if-then-else

if (Here==NULL) {

// Realize New::Pt{Next=InL.Head}

New = (Point*) malloc (sizeof(Point));

New->X=Pt.X;

New->Y=Pt.Y;

New->Next = ((PointList*)InL)->Head;

// Realize OutL::InL{Head=&New; Pts ≅Pts{«New}}

*OutL=InL; // Consume InL

((PointList*)(*OutL))->Head=New;

}

else

// Begin existential scope

{

void* HPt;

HPt=Here; // Dereference Here

// Effective conj. from eff & total fn.

if (((Point*)HPt)->X!=Pt.X) G_success=1;

else G_success=0;

if (G_success) {

// Realize New::Pt{Next=HPt.Next}

New = (Point*)malloc (sizeof(Point));

New->X=Pt.X;

New->Y=Pt.Y;

New->Next=((Point*)HPt)->Next;

// OutL::InL{Pts ≅Pts{«New; HPt.Next...}}

*OutL=InL; // Consume InL

((Point*)HPt)->Next=New;

}

}

}

}

www.manaraa.com

145

// ** At this point, New would have been deallocated

// ** if G_success were set.

}

// End existential scope

// ** At this point, InL would have been deallocated

// ** if G_success were set.

return G_success;

}

Again, the code above is awkward in places, but the implementation is

reasonable. There are several important points. First, the literals where New is

added to a set consume it by virtue of returning it as part of the output data

structure. There is no code generated for this. By definition, New becomes an

element in the set of the output data structure OutL . It is the programmers

responsibility to create data structures where all parts are reachable. (Using

theorem proving tools, he can prove this as a theorem in the logic.)

The procedures that produce New as output, i.e., the procedures that

realize the two literals of the form New::Pt{..} , must allocate New. As described

in Chapter 5, this is part of their role in producing an output data structure. In the

code above, these procedures are realized as inline code, but the reader should

consider that this code could have been encapsulated in a C function. New is not

explicitly deallocated anywhere in the above code, because the program cannot

fail between its allocation and its return to the application as part of OutL .

Finally, note that the data structure isomorphism that defines OutL is

realized through pointer assignment and destructive update, as discussed

throughout much of this work.

www.manaraa.com

146

9. Conclusion

In closing, we review what this research has accomplished, describe the

status of current development, and discuss directions for future research.

9.1 Accomplishments

In [39], Lowry describes how software engineering is moving toward

deeper descriptions of software systems, i.e., descriptions that include knowledge

about software from which programming environments can automatically or semi-

automatically deduce revisions, extensions, and compositions of existing software

systems to meet new and revised specifications. This trend, which the author

believes both desirable and inevitable, requires the representation of knowledge —

in rules or through logic — about the covered programming domains. Automatic

programming systems have encapsulated the knowledge for specific application

domains such as oil-well logging and VLSI design, and for general high-level

algorithms. Graphical user interface (GUI) development environments embody

rules about composing the various widgets and windows that are presented to an

interactive user and about coordinating the interaction between these and the

underlying application.1 Traditional logic programming and production systems

support direct rule-based programming against high-level data types.

The research in these areas has, until now, either ignored the problem of

general data structure programming or has assumed that component libraries for

this purpose would somehow be provided.If programming in the future does not

require many new data structuresand imperative languages support sufficiently

flexible software reuse, then this assumption is practical. Otherwise, we need a

representation for data structure programming that supports reasoning from and

1 GUI development environments are not traditionally viewed as a kind of automatic
programming, but because of the noted characteristics, they fit within this category, at
least for the purpose of the point being discussed.

www.manaraa.com

147

building of a knowledge base that in turn supports constructing data structure

programs and proving their properties.

This research provides a representation and a compilation technique for

data structure programs that:

• generates executable code from logical specifications,

• makes available the efficiencies of pointer reference and destructive update,

• facilitates proofs of the properties of these programs, including termination and

the maintenance of data structure invariants, and

• supports the construction of libraries of the proven theorems and generated

programs for reuse, so that more complex data structures can be built on and

verified from the programs and knowledge about simpler data structures.

This research has led to subsequent work by others and the author to

develop a prototype compiler and programming environment, and to explore the

ramifications of this technology.

9.2 Current Development

Under a TARP grant [11] stemming from this research, several

colleagues and I have built a prototype Galois compiler. This compiler implements

the code generation described in this dissertation, producing C code. It supports a

simple procedure library. Computation graphs are created and displayed, and these

are used to show the programmer the prerequisite assertions required for code

generation.

This current prototype suffers a few lacunae. Two of these will be

addressed by work planned under the above-mentioned grant. First, the

programming environment does not — yet — include an integrated theorem prover

and, because of this, there is only little support for a theorem library. We plan to

build a bridge to the Boyer-Moore theorem prover. As a first step, the axioms of

the logic of Galois have been translated into rules in this theorem-prover. Coming

steps will integrate the theorem-prover into the programming environment and

www.manaraa.com

148

will increase support for a theorem library.

Second, we need more experience with this technology to learn where it

works well and where it has unexpected problems. This is also part of ongoing

work.

9.3 Future Research

The first two directions offered for future research — object-oriented

programming and parallel programming — extend Galois in natural directions.

The third direction discussed pertains to Galois, but has much larger scope.

Support for Object-Oriented Programming

Galois supports a simple kind of specialization hierarchy. Data structure

classes are defined by logical invariants (logical predicates), and one data structure

class is a specialization of a second if its invariant is logically stronger. For

example, an ordered array is a heap, which is an array. These data structure classes

are defined through invariants —ordered(a) , heap(a) , andarray(a) — and the

specialization hierarchy is reflected in theorems that show the logical strength of

these invariants:ordered(a) ⇒heap(a) andheap(a) ⇒array(a) . Given these

strength theorems, general theorems that apply to the more general data structures

also apply to the more specialized data structures, and because of this, programs

that function with more general data structures also function with the more

specialized data structures.

In Galois, this kind of specialization operates on one underlying sort.

Indeed, a theorem such asA(x) ⇒B(x) is not syntactically well-formed unless the

predicatesA andB take an argument of the same sort. This is clearly a limitation on

Galois’s ability to deal with a specialization hierarchy.

In the area of object-oriented programming, we know well the benefits

of polymorphism, where a procedure p(x) can take as an argument any object x

that belongs to some class or any specialized subclass. Polymorphic logics and

www.manaraa.com

149

logics for reasoning about classes have been explored [30, 31], but not realized as

logic programming languages.

The integration of logic programming and object-oriented

programming holds the potential of solving one of the major problems in object-

oriented programming. Programmers in C++, Eiffel, and other object-oriented

programming languages often find that existing classes cannot be reused through

derivation without modification. This is because (1) the imperative code that

implements a class makes assumptions about how derived classes work, and (2)

the designer of a class cannot anticipate the demands that will be placed on the

class by future derivation. If methods were implemented through logical

specification rather than through procedural code, (1) would be much less of a

problem. The logical specification of each public method would be part of the

class’s interface. A derived class could augment this logical specification in

creating its version of the same method. Despite the fact that this might yield very

different procedural code, the specification of the base method is reused, which is

to say, the work that went into creating the specification is put to greater good. In

short, if methods were specified in logic, it would be possible in creating a derived

class to inherit and modify base methods at a level that supports more reuse than

by invoking encapsulated imperative code.

Support for Parallelism

To deal with pointers and non-contiguous data structures in the logic, it

was necessary to make all parts of a data structure explicit, using the set construct,

and to impose assumptions that restrict aliasing among output arguments and

destructively consumed input arguments. These same provisions make the

computation graph an expression of data and control dependency. Wherever the

computation graph forks and joins, indicating the realization of disjunction or if-

then-else, the two paths can be executed in parallel. If there is a test at the branch,

and the whole is effectively realized — i.e., the program realizes an if-then-else —

then such parallel execution would be speculative, since only the results of one

branch are needed.

www.manaraa.com

150

In the case of sequential composition, parallel execution is possible

when there is no data dependency, i.e., when none of the input variables to the

second procedure of the composition are outputs from the first procedure. These

two rules allow the computation graph to be interpreted as an expression of

parallelism much as the graphs in parallel programming environments, such as

CODE [12, 49], and reengineering tools such as E/SP [61].

There are more subtle kinds of parallelism that are not so easily

deduced from the computation graphs. In particular, it is often useful to unroll

recursion and execute the different depths of a recursive procedure in parallel.

Furthermore, the division of a program into predicates and procedures for

conceptual and functional purposes does not always reflect the best division for

parallelism. Interprocedural parallelism requires analysis of dependencies

between pieces of a procedure and pieces of its calling procedures.

These kinds of analyses have been explored [18] for traditional

programming languages. Galois brings the potential that the same logic that

expresses programs can be used to reason about control and data dependencies.

Predicates such asDisjoint directly express information about data dependency.

Integration of Knowledge-Based Programming
Systems

This chapter began by emphasizing the need for an automatic

programming system that targets the problem of data structure programming. Of

course, automatic programming has already proved useful for particular

application domains, for transaction based modeling, for general high-level

algorithms, and — under the guise of interface builders — for graphical user

interfaces. The development of most real programs usually involves more than one

of these aspects, e.g., a new program for modeling oil field depletion might use a

new graphical user interface, extend some existing high-level algorithms for oil

field modeling, and use some new data structures to efficiently realize these

algorithms. Even when automatic programming systems are used to build some

parts of a program, traditional programming languages are relied upon as the

www.manaraa.com

151

common ground of last resort to glue the pieces together.

As long as this situation holds, software engineers will continue to view

traditional programming languages as their major tool of the trade, with each

engineer learning the one or two automatic programming systems that are most

applicable to their problems. This raises the question of whether it is possible to

create an automatic programming system that provides this glue in a way that

supports greater reasoning about and reuse of software components than do

traditional languages. If such a system were to rely on GUI development

environments for user interaction, on various automatic programming systems for

high-level and domain specific algorithms, and on Galois for data structure

programming, then it would not have to include facilities to deal directly with any

of these aspects of a program. It would only provide the glue. But if this glue is not

made of user-interaction, algorithms, or data structures, of what does it consist?

And what kind of framework can deal sensibly with such diverse systems for

creating software components? To these questions, the author has no ready

answers.

www.manaraa.com

152

Glossary

Address value. Seedata structure instance.

Application. Galois programs are designed to be components invoked from a
larger application program. This larger application program is written in a
conventional programming language, and must abide by certain conventions to
correctly use Galois programs. (Galois programs that invoke other Galois
programs are guaranteed by the compiler to always abide by these
conventions.)

Atom . A positive literal. (See alsoliteral.)

Base logic. The base logic is that described in Chapter 2. Programming extends
the logic with new predicates that are recursively defined.

Base sorts. The base sorts areinteger , floatingPt , character , andaddress .
These sorts arenot data structure sorts, and the values in the domains of these
sorts are atomic.

Calculus of procedure composition. A set of operations that compose
procedures (q.v.) and a set of rules that calculate the semantic definition (q.v.)
of the resulting procedure from the semantic definitions of the component
procedures.

Complete. Seeexecution properties.

Computation graph. A directed graph that is generated from a program
specification that shows the flow of tuples and the operations on these tuples at
each node in the graph.

Consumed input (signature, tuple, variable). The destructively consumed
input variables are those whose bindings are broken and whose values are
deallocated by the successful execution of a procedure. These variables
constitute, as a set, the procedure’s destructively consumed input signature,
and the values bound to them on procedure execution constitute, as a set, the
destructively consumed input tuple.

www.manaraa.com

153

Data equality. Two data structure instances are data equal if their data values are
equal, i.e., the instances <a , u > and <b , v > are data equal iffu ≅v . (See also
strict equality and data structure isomorphism.)

Data structure class. All data structure instances that have a common sort and
that satisfy a common invariant, i.e., ifq(x) is a predicate whose argument is a
data structure sort, then all data structure instances that satisfyq(x) compose a
data structure class.

Data structure instance. A data structure instance is a value in the domain of a
data structure sort. In the intended model, a data structure instance is an
ordered pair <a , v >, wherea is the instance’saddress value, andv is the
instance’sdata value.

Data structure isomorphism. Two data structure instances are isomorphic if
(1) their data values — excluding embedded pointers — are equal, and (2)
analogous embedded pointers reference analogous parts of the data structure
instances. Data structure isomorphism formalizes the notion of two data
structure instances being “the same.” (See alsodata equality andstrict
equality.)

Data value. See data structure instance.

Domain. A sort’s domain is the set of values that provide denotations to terms in
the sort. The domain of a constant, variable, or term of a logic is the domain of
the constant’s, variable’s, or term’s sort. The domain of a signature is the cross-
product of the domains of its variables. The symbol ¶ is used to denote domains.
In the relational algebra, variables are directly assigned to domains.

Effective. Seeexecution properties.

Equality. Seestrict equality, data equality, anddata structure isomorphism.

Execution properties. The result sequence of a procedure can display several
properties relative to a postcondition. The procedure issound if every tuple in
the result sequence, together with the input tuple, satisfies the postcondition. It
is effective if it is sound, and whenever there exists a qualified result tuple, the
result sequence is just one such qualified result tuple, followed by ½. It is
complete if the result sequence includes all qualified result tuples, up to data
structure isomorphism. The procedureterminates if the result sequence ends in
½. (See alsosemantic definition.)

www.manaraa.com

154

Function. (1) A procedure that is both effective and complete, i.e., a procedure
whose postcondition qualifies at most one result tuple (up to data structure
isomorphism) and that produces this tuple if it exists. A function istotal if a
qualified result tuple exists for each input tuple. (2) The unit of encapsulation
of C code.

Generator. A program that is complete, but that is not a function. In other words,
a generator is a program that may produce many result tuples for each input
tuple. Because of this, it has a different calling convention than a program that
is not a generator.

Input (signature, tuple, variable). The union of the pure input (q.v.) and
destructively consumed input (q.v.) signature, tuple, or variables.

Interpretation. A denotational semantic for a logic. In this work, the logic is
interpreted in a relational algebra. The denotation of a formula is a relation
with the same signature. A formula isfalse if it denotes the empty relation with
empty signature. A formula istrue if it denotes the relation with empty
signature that contains just the null tuple.

Invariant. A predicate, usually with one argument, that qualifies a class of data
structure instances, e.g.,Btree(x) . See alsodata structure class.

Literal. A predicate whose arguments are replaced by syntactically correct terms
(q.v.) of the appropriate sorts, optionally preceded by a negation symbol. If
preceded by a negation symbol, the formula is anegative literal, otherwise it is
apositive literal.

Logic. A logic comprises three things: (1) a formally definedlanguage, (2) a set
of sentences in the language, called the logic’saxioms, and (3)rules of
inference that allow one to form proofs by deriving new theorems from
existing theorems. A logic’s sentences are calledformulae. A logic isrecursive
if its formulae and axioms are recursive sets. Traditional logics have languages
that follow a particular syntactic pattern: atoms are predicate symbols applied
to terms (q.v.), and formulae are atoms or other formulae that are combined
through the boolean participles and quantifiers. A traditional logic isfirst-order
if the domain of quantified variables does not include functions, predicates and
formulae.

www.manaraa.com

155

Mode. The use (direction of data flow) of an argument to a program or a free
variable of a procedure. There are three modes.In: a pure input variable
provides a value from the execution environment that remains after execution
ends.Inx: a destructively consumed input variable provides a value from the
execution environment that is no longer available after execution is successful.
Out: an output variable provides a value to the programming environment after
execution is successful, but is not bound prior to execution. (See alsosemantic
definition.)

Model. A model is an interpretation in which every theorem of the logic is true.

Output (signature, tuple, variable). When a procedure successfully returns,
new values are bound to its output variables. The set of values constitutes the
output tuple. (See alsoconsumed input andpure input.)

Postcondition. A logical formula whose free variables are contained in the
union of the input and result signatures that qualifies the set of valid result
tuples for each input tuple. For a program, the postcondition is a predicate
whose arguments are the same as the specified program’s. (See alsosemantic
definition.)

Precondition. A logical formula whose free variables are contained in the input
signature that qualifies the set of input tuples on which a procedure will
correctly function. (See alsosemantic definition.)

Prerequisite assertions. The prerequisite assertions are a set of closed
formulae in the logic that the front-end generates at the same time that it
generates a computation graph. The procedure represented by the computation
graph is guaranteed to meet its semantic properties only if these assertions are
true. (These assertions can also be viewed as open formulae attached to
particular nodes on the computation graph.)

Procedural Calculus. See calculus of procedure composition.

Procedure. Formally, a procedure is a function that maps an input tuple into a
sequence of output tuples. A procedure is implemented as a fragment of code in
the target language of the compiler. The calculus of procedure composition
gives rules for composing procedures. These compositions correspond to
different ways of gluing together code fragments.

www.manaraa.com

156

Program. A program is a procedure (q.v.) that satisfies a program definition, that
is bound to the program name designated in the program specification (q.v.),
and that is saved in the program library for reuse in creating larger programs.
The example back-end implements a program as a C function.

Program specification. A program specification is a semantic definition (q.v.)
for the program and a name for the program, where the postcondition for the
program is a named predicate whose arguments are the union of the input
signature and result signature.

Pure input (signature, tuple, variable). The pure input variables are those
whose bindings remain across execution of a procedure. These variables
constitute, as a set, the procedure’s pure input signature, and the values bound
to them on procedure execution constitute, as a set, the pure input tuple.

Recursive predicate definition. A formula of the formp(x,...z) ⇔Φp

recursively defines the new predicate symbolp. Thebody of the definition,Φp,
is any formula, perhaps involvingp, whose free variables arex,...z . Given
restrictions on the use ofp in Φp, in particular, that thep occurs at only an even
negation depth withinΦp, p may be added to the logic and an interpretation ofp

may be added to the logic’s model.

Relation. A signature and a set of tuples with that signature.

Result (signature, tuple, variable). When a procedure successfully returns,
new values are bound to its output variables (q.v.) and original values remain
bound to its pure input variables (q.v.). These variables together are the result
signature, and the binding is a result tuple.

Semantic definition. The semantic definition of aprocedure comprises (1) its
input signatureI andresult signatureQ , (2) aprecondition whose free
variables are contained in the input signature, (3) apostcondition whose free
variables are contained in the union of the input signature and result signature,
and (4) a set ofexecution properties. A procedure meets its semantic definition
if for any tuple in the precondition, its output sequence satisfies the execution
properties relative to the postcondition. (The italicized phrases also appear in
this glossary. See alsoprogram specification.)

www.manaraa.com

157

Semantic map. For a formulaϕ where V(θ)=I ∪Q , thesemantic map is the
function ƒ: ¶I → 2¶Q that maps each input tuple in ¶I into the set of result tuples
in ¶Q where each result tuple in the set, together with the input tuple, satisfyϕ.

Semantics . The assignment ofmeaning to a language.Procedural semantics
give meaning to a programming language by describing the computation
performed by each syntactically correct program. Any kind of semantics that is
not procedural is said to bedeclarative. Formal semantics assign meaning
through a formal theory.Denotational semantics assign meaning through a
mathematical function that maps each syntactic part of the language to a
mathematical object. This object is called the text’sdenotation, and the text is
said toexpress or denote this object.Examples: The description of C in the
ANSI standard is an informal, procedural semantics. The Hoare calculus
provides a formal, declarative semantics. The usual model theory of logic is a
denotational semantics.

Signature. A relational signature is a set of variables. Every variable has a sort,
so a relational signature characterizes the sort of a predicate or formula, or the
type of a relation. Aterm signature is a sequence of sorts, the first of which is
the sort of the function or term, and the remainder of which are the sorts of the
term’s free variables or the function’s arguments. Given a termt and a variable
x that has the same sort ast and that is not free int , a relational signature for
the predicatex=t is equivalent to the term signature oft .

Sort. The syntactic categories of terms in a logic are its sorts. In a single sorted
logic, such as first-order arithmetic, there is only one sort, which is the integer
sort in the case of arithmetic. A logic can express different kinds of objects by
having multiple sorts, for example, boolean and integer. (See [19] for an
exposition on multi-sorted logic.) Sorts are roughly analogous to types in
programming languages. See also,domain.

Strict equality. Strict equality (≅) is the usual notion of equality that permits in
all contexts the substitution of “equals for equals,” and that denotes semantic
identity. This notion of equality is different from the informal notion of two
data structure instances being “the same,” since the latter is often applied to
data structure instances that don’t have the same address value. (See alsodata
equality anddata structure isomorphism.)

www.manaraa.com

158

Term. Traditional logics include functions. Terms are the syntactically correct,
recursive application of functions to constants and variables. Thus, a constantc

or variablev of sorts is a term of sorts. If f is a a function with signature
(s0,...s n) andt 1,...t n are terms of sorts1,...s n, respectively, then
f(t 1,...t n) is a term of sorts0.

Terminates. Seeexecution properties.

Theorem. A logic has a deductive apparatus consisting ofaxioms andrules of
inference. Every formula that can be derived from the axioms by applying the
rules of inference is a theorem.

Tuple. An assignment of values to a set of variables. The value assigned to a
variable must be in the domain of the variable’s sort. Thenull tuple is just the
empty set.

www.manaraa.com

159

Bibliography

1. Aït-Kaci, H.,Warren’s Abstract Machine: A Tutorial Reconstruction, MIT
Press, 1991

2. Apt, Krzysztof R.,Introduction to Logic Programming, Technical Report,
Centre for Mathematics and Computer Science, PO Box 4079, 1009 AB
Amsterdam, The Netherlands

3. Ambler, A. L., Good, D. I., et al,GYPSY: A Language for the Specification
and Implementation of Verifiable Programs, Proc. ACM Conf. on
Language Design for Reliable Software, 1977, pp. 1-10

4. Backus, John,Can Programming be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs, CACM, v21, n8,
August 1978

5. Baldwin, Doug,Consul: A Parallel Constraint Language, IEEE Software,
0740-7459/89/0700/0062

6. Barstow, D. R.,Domain-Specific Automatic Programming, IEEE Trans. on
Software Engineering, v SE-11, n11 (Nov. 1985), pp.1321-1336

7. Beeri, Catriel, et al,EmbeddingΨ-terms in a Horn-clause Logic Language,
MCC Technical Report, ACA-ST-050-88

8. Berg, H. K., et al,Formal Methods of Program Verification and
Specification, Prentice-Hall, 1982

9. Boolos, George S. and Jeffrey, Richard C.,Computability and Logic, Third
edition, Cambridge University Press, 1989

10. Bowen, K. A.,Programming with Full First-Order Logic, in Artificial
Intelligence 10, 1982, 421-440

11. Browne, J. C., and Turpin, R.,Software Component Reuse: Formal
Specification of Update Operations on Complex Data Structures, UT
Computer Sciences, TARP Proposal, 1991

www.manaraa.com

160

12. Browne, J. C., Lee, T. J., and Werth, J.,Experimental Evaluation fo a
Reusability Oriented Parallel Progamming Environment, IEEE Trans.
Software Engineering, v16, n2, 1990

13. Cardelli, Luca, and Mitchell, John C.,Operations on Records, Technical
Report, Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301

14. Clocksin, W. F., and Mellish, C. S.,Programming in Prolog, Springer-
Verlag 1981

15. Chang, Chin-Liang, and Lee, Richard Char-tung,Symbolic Logic and
Mechanical Theorem Proving, Academic Press, 1973

16. Corcoran, John, et al,String Theory, Journal of Symbolic Logic, v 39, n 4,
Dec 1974

17. Engels, G., et al,Graph-grammar Engineering: A Software Specification
Method, in Graph Grammars and Their Application to Computer Science,
ed. Nagl & Rozenberg, Springer-Verlag, 1986

18. Ferrante, J., et al,The Program Dependence Graph and its Use in
Optimization, ACM TOPLAS, v9, n3, July 1987

19. Gallier, Jean H.,Logic for Computer Science: Foundations of Automatic
Theorem Proving, Harper & Row, 1986

20. Gelder, A. Van, Ross, K. A., and Schlipf, J. S.,The Well-Founded
Semantics for General Logic Programs, JACM, v38 n3, July 1991

21. Goguen, Joseph A., and Meseguer, Jose,EQLOG: Equality, Types, and
Generic Modules for Logic Programming, in Logic Programming:
Functions, Relations, and Equations, ed. DeGroot, Doug, and Lindstrom,
Gary

22. Gordon, Michael J. C.,The Denotational Description of Programming
Languages, An Introduction, Springer-Verlag, 1979

23. Guttag, J. V., and Horning, J. J.,The Algebraic Specification of Abstract
Data Types

24. Harper, Robert W. and Pierce, Benjamin C.,Extensible Records Without
Subsumption, Technical Report, School of Computer Science, Carnegie
Mellon, CMU-CS-90-102

www.manaraa.com

161

25. Hoare, C. A. R.,An axiomatic basis for computer programming, CACM,
October 1969

26. Hoare, C. A. R.,Recursive Data Structures, Intl Jnl of Computer and
Information Sciences, v4 n2, pp. 105-131

27. Hunter, Geoffrey,Metalogic: An Introduction to the Metatheory of First
Order Logic, University of California Press

28. Iscoe, Neil,Domain Specific Programming: an Object-Oriented and
Knowledge-Based Approach to Specification and Generation, Ph.D.
Dissertation, University of Texas at Austin

29. Kernighan, Brian W., and Ritchie, Dennis M.,The C Programming
Language, Second Edition, Prentice Hall, 1988

30. Kifer, M., and Lausen, G.,F-Logic: A Higher-Order Language for
Reasoning about Objects, Inheritance, and Scheme, ACM SIGMOD Conf.
on Mgt of Data, May 1989. pp. 134-146

31. Kifer, Michael and Wu, James,A Logic for Programming with Complex
Objects, Technical Report, Dept of Computer Science, SUNY at Stony
Brook

32. Knuth, Donald E.,The Art of Computer Programming, Volume 1, Second
Edition, Addison-Wesley, 1973

33. Kowalski, R.,Algorithm=Logic+Control, CACM, 22 (1979), pp. 424-431

34. Krishnamurthy, Ravi, and Naqvi, Shamim,Towards a Real Horn Clause
Language, MCC Technical Report, ACA-ST-077-88

35. Kumar, Mohan,A Compiler for Galois, Master’s Thesis, University of
Texas at Austin, forthcoming

36. Leler, William,Constraint Programming Languages: Their Specification
and Generation, Addison-Wesley, 1988

37. Lloyd, J. W.,Foundations of Logic Programming, Springer-Verlag, 1984

38. Lowry, Michael R., and McCartney, Robert D., ed.,Automatic Software
Design, AAAI Press, 1991

www.manaraa.com

162

39. Lowry, Michael R.,Software Engineering in the Twenty-First Century, in
[38]

40. Maier, D.,A Logic for Objects, in Proc of the Workshop on the Foundations
of Deductive Databases and Logic Programming, Washington DC, August
1986, pp. 6-26

41. Meyer, Bertrand,Applying “Design by Contract,” IEEE Computer, v25,
n10, October 1992

42. Miwelski, Jaroslaw,Functional Data Structures as Updatable Objects,
IEEE Transactions on Software Engineering, v16 n12, pp. 1427-1432

43. Montanari, Ugo, and Rossi, Francesca,An Efficient Algorithm for the
Solution of Hierarchical Networks of Constraints

44. Mostow, J.,What is AI? And What Does It Have to Do with Software
Engineering?, forward to special issue on artificial intelligence and
software engineering, IEEE Trans. on Software Engineering, v SE-11, n11
(Nov. 1985), pp. 1253-1256

45. Nagl, M,Graph Technology Applied to a Software Project, in The Book of
L, ed. Rozenberg and Salomaa, Springer-Verlag 1985, pp. 303-322

46. Nam, Y., and Henschen, L. J.,Compiling Linear Recursive Programs with
List Structure in Prolog into Procedural Languages, Proc. COMPSAC90,
Chicago, Ill., Nov. 1990

47. Naqvi, Shamim, and Tsur, Shalom,A Logical Language for Data and
Knowledge Bases, Computer Science Press, 1989

48. Naqvi, Shamim,Stratification as a Design Principle in Logic
Programming, MCC Technical Report ACA-ST-247-88

49. Newton, Peter, and Browne, James C.,The CODE 2.0 Graphical Parallel
Programming Language, Proc. ACM International Conf. on
Supercomputing, July, 1992

50. Nicholson, Tim, and Foo, Norman,A Denotational Semantics for Prolog,
ACM TOPLAS, v11 n4, pp. 650-665

51. Nikhil, Arvind and Rishiyur S., and Pingali, Keshav K.,I-Structures: Data
Structures for Parallel Computing, ACM TOPLAS, v11, n4, October, 1989

www.manaraa.com

163

52. O’Keefe, Richard A.,The Craft of Prolog, MIT Press, 1990

53. Pagan, Frank G.,Formal Specification of Programming Languages: A
Panoramic Primer, Prentice-Hall, 1981

54. Pratt, Terrence W.,Formal Specification of Software using H-graph
Semantics, in Graph Grammars and Their Application to Computer
Science, ed. Goos & Hartmanis, Springer-Verlag, 1982

55. Pratt, Terrence W.,H-Graph Semantics, DAMACS Reports 81-15 and 81-
16, University of Virginia, Charlottesville, VA 22901

56. Przymusinski, Teodor C.,Non-monotonic Reasoning vs Logic
Programming: A New Perspective, in The Foundations of Artificial
Intelligence, ed. Partridge and Wilks, Cambridge University Press, 1990

57. Przymusinski, Teodor C.,On the Declarative Semantics of Deductive
Databases and Logic Programs, in The Foundations of Deductive
Databases and Logic Programming, ed. J. Minker, Morgan Kaufmann,
1988

58. Ray, Patrick,Program in Galois, Master’s Thesis, University of Texas at
Austin, forthcoming

59. Setliff, Dorothy,On the Automatic Selection of Data Structures and
Algorithms, in [38]

60. Smith, Douglas R.,KIDS — A Knowledge-Based Software Development
System, in [38]

61. Sridharan, K., Browne, J. C., and Newton, P.,An Environment for Parallel
Structuring of Fortran Programs, International Conf. on Parallel
Processing, 1989

62. Stark, W. Richard,LISP, Lore, and Logic: An Algebraic View of LISP
Programming, Foundations, and Applications, Springer-Verlag, 1990

63. Subrahmanyam, P. A., and Jia-Huai, You,FUNLOG: a Computational
Model Integrating Logic Programming and Functional Programming, in
Logic Programming: Functions, Relations, and Equations, ed. DeGroot,
Doug, and Lindstrom, Gary

www.manaraa.com

164

64. Van Hentenryck, Pascal,Constraint Satisfaction in Logic Programming,
MIT Press, 1989

65. Van Roy, P. and Despain, A. M.,High-Performance Logic Programming
with the Aquarius Prolog Compiler, IEEE Computer, January, 1992

66. Warren, D. H. D.,Implementing Prolog — Compiling Predicate Logic
Programs, Dept. of AI, Univ. of Edinburgh, Scotland, Res. Reps. 39 & 40

67. Waters, R. C. ,The Programmer’s Apprentice: A Session with KBEmacs,
IEEE Trans. on Software Engineering, v SE-11, n11 (Nov. 1985), pp. 1296-
1320

www.manaraa.com

VITA

William Russell Turpin was born in Wiesbaden, Germany, on May 7, 1958,

and was soon thereafter adopted by Dr. and Mrs. William R. Turpin. He was four when

his family moved to Austin, where he was naturalized an American citizen. He

graduated from the (now defunct) high school department of Schreiner College,

entered the University of Texas at Austin, in September, 1974, and graduated with a

Bachelor of Arts degree from the liberal arts honors program (Plan II) in August, 1977.

For the next year and a half, he studied mathematics at the graduate level at the

University of Texas and at the University of Michigan in Ann Arbor.

From 1976, he worked as a computer programmer, and on returning to

Austin in 1981, he joined Scientific and Engineering Software (then, Information

Research Associates), where he has worked since, most recently as software architect,

manager, and research scientist. In 1982, he began the formal study of computer

science, again as a graduate student at the University of Texas. He was awarded a

Master of Science degree in computer science in 1986. In 1991, the Texas Advanced

Research Program funded a grant stemming from his research work. He has published

refereed papers in distributed concensus algorithms and hardware-software co-design.

Addresses: 4032 S. Lamar #500-138, Austin, Texas, 78704 (U.S. mail)

turpin@ses.com turpin@cs.utexas.edu (Internet)

This dissertation was prepared by the author, using FrameMaker™ on Macintosh
computers.

