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Abstract: Current programming languages that are grounded in a formal logic — such as pure
Lisp (based on the lambda calculus) and Prolog (based on Horn clause logic) — do not support
the use of complex, pointer-based data structures. The lack of this important feature in logically
grounded languages contrasts sharply with its strong support in the imperative programming
languages that have enjoyed wide application, of which C is a prime example. Unfortunately,
the formal methods for reasoning about imperative languages have not proved broadly useful
for reasoning about programs that manipulate complex, pointer-based data structures. Between
these two camps resides an open question: How can we verify programs involving complex,
pointer-based data structures?

This work gives an answer to this question. It describes a programming language in which a
programmer can define logical predicates on data structures and pointers, and use these
predicates to specify programs that manipulate complex, pointer-based data structures. These
programs may dynamically allocate memory and destructively modify their arguments. This
solution is grounded in two theoretical advances. (1) This work devefopsarder logic for

data structureghat formalizes the notions that are necessary for defining and reasoning about
relationships between data structures, including notions such as the address of a data structure,
pointer reference, reachability via pointer reference, and data structure overlap. (2) This work
provides acompilation algorithmbased on aalculus of procedure compositiaihat generates
procedural code from a program specified in the logic. Compilation is in the style of automatic
programming, and relies on the programmer, using theorem proving tools, to verify assertions
in the logic that are generated by the compilation algorithm.
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1. Introduction

The goal of this research is to establish a representation for programs
and an accompanying compilation process satisfying three criteria:

(1) Expressiveness for data structuresProgrammers can use the representation to
define and manipulate general data structures, including those that involve
complex pointer relationships.

(2) Run-time efficiency.The representation compiles to efficient code.

(3) Support for formal reasoning. The representation supports formal reasoning
about the data structures and their manipulations.

The importance of this research lies in the combination of these criteria.
Imperative programming languages, of which C will serve as the paradigmatic
example, achieve the first two criteria, but they do not support formal reasoning.
Logic languages and applicative languages support formal reasoning — in their
theoretically pure forms — but they do not provide the expressive power and
efficiency of C when dealing with general data structures, especially those with a
complex pointer structure. This work presents a new paradigm for logic
programming that attains the stated goal.

The traditional implementations of logic programming, based on
unification and goal expansion, search the space of possible proofs by generating
all possible substitution terms, each of which satisfies some of the clauses of the
logic program. Efficient execution of a logic program must avoid this kind of
speculative computatioifficiently maintaining some kinds of data structures
also requireslestructive updatevhere the resulting data structure instance is
produced by changing a portion of the original data structure instance, vathnout
copying of the unchanged portion.

The compilation process described in this work determines a static
order of computation for a program that realizes a logical predicate. It builds a
procedure that realizes the predicate from procedures that realize the logical
components of the predicate. At run-time, the program binds values to variables in

1
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an order that incrementally satisfies portions of the predicate, until all output
variables are bound to values that satisfy the entire predicate. The run-time
execution iprogressiveonce made, a binding is never undone. The run-time
execution is alseffective if there exist output values that satisfy the predicate,
then the execution finds these values.

The compilation process supports the incremental construction of
libraries of verified programs. A program that is produced by the compilation
process is known to satisfy its specification, and becomes available for use in
compiling a larger program whose specification makes use of the first program’s
predicate.

The compilation process applies generally to languages based on the
first-order predicate calculus. In counterpoint to the good qualities listed above, it
suffers two weaknesses. First, the compilation process may require the
programmer to modify, in a way that preserves logical equivalence, the original
predicate definition. Predicates can be defined at a level that is “too abstract” for
compilation, in which case they must be written in a computationally more
concrete fashion so that the compilation process can produce code for them.
Second, the compilation process depends on an oracle that tells whether assertions
in the logic are true. In practice, this oracle is the programmer working with
available theorem-proving tools. Wrongly verifying a false assertion may cause
the compilation process to produce incorrect code. Failure to verify a true assertion
will prevent the compilation process from producing code for the program in
guestion. Both of these issues are examined in detail in this work.

This combination of qualities in the compilation process — on the
positive side, the generation of progressive and effective executables for programs
that are logically specified, and the hierarchical composition of verified programs,
and on the negative side, the expense and trouble of an interactive compilation
process — may be useful in application domains other than data structure
programming. This research direction is not explored in the current work.
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1.1  The Problem and the Approach

Addressed memory is the primary store for virtually all modern
computer system%?l’his basic fact permeates the art and practice of software.
Software engineers think of data structures in terms of addressed memory: this
piece over here points to that piece over there. Programmers still cut their eye teeth
on Knuth’s multivolume work [32], large portions of which are concerned with the
problems of addressed memory. The popular imperative languages such as C,
Pascal, and Modula are characterized by the freedom they give the programmer to
allocate, release, and point to memory. (In this regard, the modern language C++ is
distinguished by the complexity of mechanisms available and the subtlety of the
rules that must be followed in writing correct programs.)

Addressed memory is cheap, and its direct use in programming
languages is powerful. But this power carries a price. In industry, software projects
that use these languages are plagued by subtle bugs that are traced — with
difficulty, and often after great expense — to mangled pointers or erroneous
memory management. Businesses that develop software evaluate expensive
software development tools partly on their ability to help with these kinds of bugs.
Even the customer becomes aware of the software problems associated with the
cavalier use of addressed memory, when a delivered product exhibits a memory
“leak” or displays an occasional tendency to trounce on the wrong data.

Academia has proposed a variety of formal approaches to deal with the
software problem. Programming languages are given formal semantics, so that one
can prove things about them, and mathematical languages such\asdlmilus
and Horn clause logic are implemented as programming systems. These
approaches provide views of data structures that are considerably more abstract
than the addressed memory visible to the C programmer. Conversely, the C

L While novel memory architectures are explored in research environments and serve some
specialized niches — such as the use of associative memory for regular pattern matching
and the synaptic memory in neural nets for more complex pattern recognition — random
access memory is far more economical for most purposes, and is likely to remain so for
the foreseeable future.
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programmer’s understanding of data structures has resisted formal treatment.

This work takes the pointer-based data structures that are the staple of
the C programmer as a litmus test of formal methods. It assumes that the
expressiveness of C in this regard is worthwhile, and that for practical reasons, it is
not something that will be easily discarded. Using this litmus test, it is fair to
classify how formal methods deal with data structures into three groups.

Avoidance Many semantically “clean” languages rely only on a view of data
structures that is considerably simpler than that available to the C programmer.
For example, pure Lisp [62] relies on lists and Prolog [14] relies on functors.
Algebraic data types [23] rely on initial algebras. The problem with this approach
is that the reliance on simpler data structures limits the applications for which the
language is used. Often, a language such as these is extended with constructs that
support more general data structure use, but that sully its formal cleanliness.

PreventionThe semantics of languages such as C can be axiomatized using
continuations and a notion of global memory state [22, 53]. This approach has
proved impractical, despite some efforts to build support for verification into
programming environments [3]. Languages such as C have resisted the broad use
of formal techniques to verify complex programs written in them.

Camouflagelnfinite, recursive structures provide a view of data structures that are
roughly equivalent to the pointer-based data structures of C. Similarly, graph
grammars [54, 55] have been used to implement data structures more general than
lists and arrays. While these formal approaches attempt to deal head on with
complex data structures, their views of data structures are foreign to programmers
familiar with the classical notions, and they provide less expressiveness than C,
especially regarding memory management and destructive update.

Rather than rejecting the pointers and data structures of C as something
too ugly for study, trying to create an axiomatic or denotational semantics for an
imperative language (very hard!), or hiding data structures behind mathematical
objects such as infinite graphs, this work embeds the data structures and pointers
of C in a first-order logic, giving them a formal foundation while preserving most
of the C programmer’s understanding of them. The problem this work tackles, and
the approach it takes, are summarized below.
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Problem Statement:

Is there a way to program pointer-based data structures that preserves the
expressiveness and efficient execution of C, while providing support for formal
reasoning?

Approach:

(1) Develop dirst-order logicin which one can express invariants for, operations on,
and proofs about data structures.

(2) Develop ecompilation procesghat turns operations expressed in the logic into
efficient C programs.

There is a special benefit to this approach that deserves comment. Code
reuse is one of the major problems in the engineering of large software systems
involving complex data structures. With procedural programming, code reuse
relies on the programmer understanding that a particular procedure has the desired
behavior, and identifying that procedure by name. The development of object-
oriented languages makes reuse a little easier, by allowing the programmer to
specify some logical properties between different kinds of data structures, to wit,
that one kind of data structure is a specialization of a second, and shares in its
invariants and methods, unless these are explicitly redefined. With the
programming paradigm developed in this work, data structure invariants are fully
stated in a first-order logic. These invariants are used to verify that programs are
applied only to data structures on which they correctly operate. In short, a
procedural programming environment “knows” only the name of a piece of code.
An object-oriented programming environment additionally “knows” about
inheritance and genericity relationships between data types. But a logic
programming environment “knows” fully of what a program does, and what
preconditions are required for it. This leads to the possibility of code reuse through
theorem proving, something that could become especially important for large
software systems that rely on complex data structures [11]. This theme is only
lightly explored in this work, though its promise is a motivating influence.

The approach stated above requires the development of a logic and the
development of a compilation process. These are now summarized.
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The Logic

The logic presented in Chapter 2 is built on a hierarchy of sorts that
capture fairly well the data types of C, including a notion of pointer reference. A
measure of the fidelity of this mapping is that most sort expressions are carried by
the compiler into C declarations without any syntactic change. For example, a
logical variable whose sortdsuct Pt{float X; float Y;} will be
identically typed in C. Pointers in the logic generally behave as they doin C,
though some of the intricacies of C’s pointer arithmetic are absent.

The logic was developed as an extension of the many-sorted first-order
predicate calculus, rather than as a variety of Horn clause logic. This departure
from the custom of the logic programming community was motivated by a
personal preference for the programming style afforded by the predicate calculus,
and made possible by the compilation process. Regarding the first issue, the author
believes that localizing the definition of a new predicate in a single logical formula
makes programs more understandable. This style of logical definition is closer to
the way logic is used in the many other areas to which it is applied as a medium for
rigorous communication. Regarding the second issue, much of the impetus for
Horn clause logic stems from the use of algorithms that require it, such as SLD
resolution [14]. For the sake of run-time efficiency, the logic programming
language described in this work does not use SLD resolution, nor even perform
run-time unification. Departing from this kind of implementation removes much of
the motivation for using Horn clause logic. (Bowen wrote an early paper [10] on
the use of full first-order logic for programming.)

Horn clause logic has also been popular for theoretical reasons.
Because Horn clause logic restricts the use of negation, it is easy to assign
semantic models to new predicates defined in it [2, 37]. Recent developments in
semantics [20, 57] have broadened the class of logic programs that can be assigned
models, and lessened the restrictions on the use of negation. Chapter 4 presents the
semantic theory of the logic used in this work. A recursively defined predicate is
assigned a model that is a least-fixed point extension of the logic, providing the
recursive definition meets a syntactic restriction similar to stratification. Unlike
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most work in the logic programming community, negation is given its classical
meaning.

The Compilation Process

As adumbrated above, this work describes an implementation of
programs specified in logic that is very different from the traditional
implementation logic programming languages, such as Prolog. A large portion of
the current work explains a compilation process that turns a program specification
into an executable unit of code in a conventional language, of which C is taken as
the prime example. The compilation process is sketched in Figure 1.

1. Define a predicate in the logic.
2. Specify desired semantic properties.

Key to Labels:

predicate definition program specification n. Programmer’s task.

\ / intermediate data
software component

prerequisite assertion  computation

(formula in the logic) graph
.

3. Verify assertion.

theorem-proving

procedure i; conventional
language (e.g., C function)

Front-end fails.

Assertion
is false.

Figure 1: The compilation process.

The process begins with the programmer defining a predicate that states
the post-condition for a desired program. The programmer then forms a program
specification that references the predicate as the program’s postcondition. The
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program specification also specifies the program’s precondition, which of the
predicate’s arguments are intended to receive input values and which are intended
to produce output valuésand a list of the desirezkecution propertiefor the

program. Execution properties are requirements such as whether the program
should produce all sets of output values that satisfy the predicate or only one such
set, and whether the program must terminate if the predicate cannot be satisfied.

A front-end compiler parses the predicate definition, determines if it
satisfies the syntactic restrictions, and builds from the program specification an
intermediate representation of a procedure that realizes the predicate. This
procedure is a composition of (1) procedures that are part of a presupplied stock,
and (2) procedures that were created from the earlier, successful compilation of
other programs. The front-end relies oredculus of procedure compositiofhis
calculus has a set of composition rules each of which composes a procedure that
realizes a logical construct — e.§L) ¢ — from procedures that realize the
constituent formulae — e.f,and¢. For each such composition, the calculus
derives (1) execution properties for the composed procedure, and (2) a
precondition that qualifies the input set for which the composed procedure realizes
its postcondition. The precondition for the final procedure must be entailed by the
precondition in the program specification. This entailment ipteeequisite
assertionfor the compiled program. In other words, the front-end compiler
generates an intermediate representation of a procedure and a meta-theorem that
says “this procedure satisfies the program specification grérequisite
assertionn holds,” wherex is a closed formula in the logic.

At this point, a traditional compiler would produce code in the target
language from the intermediate representation. In our scheme, there is little point
in producing code unless its execution will satisfy the program specification, and
this is known to be the case only if the prerequisite assertion generated by the front-
end is a theorem in the logic. Before code is produced, the programmer must verify

2 In the logic programming community, the direction of data flow through a variable is
called the variable'snode

3 Chapter 3 defines the execution properties and describes program specification.
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the prerequisite assertion. If this assertion is not true, the programmer must revise
the program specification. Ideally, the programmer will work with a suite of
theorem proving tools that help verify assertions or detect how they fail. The kind
of theorem proving tools that are needed, and how they should be integrated into
the programming environment, are important issues that lie beyond the scope of
this dissertation.

Once the prerequisite assertion is verified, the back-end compiler
produces code from the intermediate representation. The recursive definition of
the new predicate, the program specification, and the newly produced program are
stored in a library, so that future programs can be built on the ones previously
compiled. (The data flow into the library is not shown in Figure 1.)

There are two places where the programmer can be stymied in trying to
compile a program. First, the front-end may not find a composition of procedures
that realizes the program’s predicate. This occurs when the predicate is defined too
abstractly in the logic. For example, the logic includes a primitive preditatie,
structure isomorphispthat can be used to specify the deep copy of arbitrarily
complex data structures. No compiler can automatically produce code that
performs general data structure copies. When the compiler fails, the programmer
must redefine the predicate in terms that are computationally simpler, though
logically equivalent. Given the above example, instead of merely asserting
isomorphism between two data structures, the programmer would write a longer,
logically equivalent, probably recursive, predicate that defines relationships
between theomponent partef the two data structure instances. In essence, this
tells the front-end: this is how to copy this kind of data structure. Such rewriting is
always possible, because the compiler can generate code for the basic operations
on the primitive data structure sorts.

Second, the programmer can also be stymied after the front-end
produces the prerequisite assertion. If the assertions is false, it indicates that the
program involves operations whose correctness depends on run-time conditions.
Two examples are ubiquitous. First, to subscript an array, the subscript expression
must be within array bounds. Second, to dereference a pointer, the pointer must
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reference a component of a passed data structure. If the prerequisite assertions are
not theorems in the logic, the programmer must either rewrite the predicate so that
the assertions are tested at run-time, or the programmer must make these assertions
part of the precondition for the program. In the latter case, the prerequisite

assertion becomes an assumption about the data structures against which the
program may execute. The front-end takes into account the preconditions of
component procedures that compose into the current compilation, so that these are
guaranteed either by the nature of the composition or by the precondition of the
composed procedure.

It is worth noting that the semantic theory and compilation process
presented in this work are largely independent of the primitive functions and
predicates that are defined in the logic, and also of the compiler’s target language.
A primitive predicate is built into the system through axioms that logically define
the predicate and library procedures with known execution properties that realize
the predicate. (The axioms make the primitive predicate known to the theorem-
proving tools, while the library procedures give the compiler’s front-end a way to
use the primitive predicate in composing larger programs.) The compiler’s back-
end isolates the target language in the usual fashion. This work focuses on data
structure programming, and targets C as an example, but as suggested earlier, the
general framework may be useful to other application domains.

1.2 Related Work

There are three kinds of related work. First, researchers in automatic
programming have investigated the general question of turning high-level
specifications into executable code. Second, there has been a variety of work on
the representation and verification of data structures. Third, there is some relevant
work on the optimization of logic programs in their more traditional guise. Each of
these three areas is discussed below. The current research is positioned as a novel
kind of automatic programming.
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Automatic Programming

There is a body of work ceutomatic programminghat is, the
generation of programs from high-level specifications through automatic and semi-
automatic transformation and refinement of the specification. Because the research
presented here concerns the generation of programs from high-level specifications,
it falls into this genre, though as will be described shortly, there are some aspects
that set it apart. In [44], Mostow presents a scheme for classifying different
automatic programming systems and surveys several such systems. Mostow
describes this classification scheme as follows:

* ScopeWhat kinds of software are addressed?
* Power:How much is automated?

* Level:What part of the route from informal requirements to machine language is
addressed?

» Purpose:What parts of the software lifecycle are addressed?
* KnowledgeWhat kinds of knowledge are explicitly used by the system?

The specification languages used by these systems support the
manipulation of data at an abstract level. At some point during the transformation
from high-level specification into executable program, these abstract data types
and operations must be realized as concrete data structures and procedures that
operate on them. Some of these systems support only simple data types for which
code can be automatically generated without much difficulty. The systems that
support more complex data types are more interesting to our purpose. Of these
latter, the method each uses to refine its data types can be placed into one of three
categories.

(1) Programmer selection from data structure libratgteractive annotation is used

to select concrete data structures to represent the high-level data types. This is the
route taken in KIDS [60].

(2) Automatic selection from data structure librafhe automatic programming
system supports a particular application domain, and it uses knowledge of this
domain to automatically select data structures from a stock set. This is
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exemplified in ELF [59], which supports the creation of VLSI design programs,
and@NIX [6], which supports the creation of applications related to oil well
logging.

(3) Hand-programming of data structureghe programmer is given a way to extend
the kinds of data structures that are targeted. For example, in KBEmacs [67], the
programmer can add neslichesthat deal with new kinds of data structures.

None of these methods supports the creation of verified code for general
data structures. (1) and (2) rely on data structure libraries that are written and
tested prior to their use in the automatic programming system. These systems do
not address how these libraries are created nor how they are tested. (3) permits the
programmer to build data structure procedures, but does not support their
verification.

This suggests that the construction of verified data structure libraries is
an appropriate domain for automatic programming. From the perspective of
automatic programming, that precisely describes the purpose of the current work.
Applying Mostow’s categorization scheme, our research is summarized as an
experiment in automatic programming with the following characteristics.

» ScopeData structure libraries.

* Power: Automatic code generation, but reliance on theorem-prover or
programmer interaction to verify necessary assertions.

» Level:From specifications in first-order logic to code in C.
» Purpose:Creation and verification of component libraries.

» KnowledgeCharacteristics of addressed memory, as expressed in the logic’s
axioms and embedded in the calculus of procedure composition.

Representation of Data Structures

The tension between formal neatness and execution efficiency in the
representation of data structures has arisen in several fields. In the field of logic
programming, Kifer [30, 31] and Beeri [7] extend Horn clause logic to include
more complex kinds of data than is available in Prolog, the first with objects and
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the second with recursive record structures. These extensions do not provide the
expressiveness of C, and neither researcher is concerned with execution efficiency
to the degree with which it is treated in the current work.

The algebraic specification of abstract data types, which directly
addresses this problem, enjoys a rich body of literature. The paper by Guttag [23]
is fundamental. But again, algebraic specification does not provide the desired
expressive power, especially with regard to pointer reference. Furthermore,
efficient implementation remains an open issue.

Hoare [26] wrote on using recursive structures instead of pointer
relationships, arguing that pointers had bad semantic properties similar to the
goto statement. General recursive data structures are formalized using graph
grammars, and researchers such as Pratt [54, 55], Engels [17], and Nagl [45] have
applied these to software development, with Pratt especially focusing on the
representation of data structures. There are two problems. First, it is hard to
program graph grammars. Second, in most of the representations, it is not clear
that the various ways of programming graph grammars support reasoning about
their programs.

Optimization of Logic Programs

The third kind of related work concerns those researchers who have
tried to improve the execution efficiency of logic and applicative programming
languages, especially those concerned with destructive update. Nikhil [51] and
Miwelski [42] have both investigated destructive updates in the applicative
framework. Nam and Henschen [46] turn a certain class of Prolog programs into
procedural code.

The research on constraint programming [5, 36, 64] largely investigates
the efficient execution of certain classes of logic programs, though it is not always
couched in these terms. (Curiously, straddling both sides of the fence, Montanari
[43] uses graph grammars to solve constraint satisfaction problems.) The research
into constraint programming is related to our research through its concern with
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determining a static data flow that will solve a logical query. Research into
optimizing Prolog execution also touches on this. The work of Warren [66] and the
work of Van Roy and Despain [65] are examples.

1.3 Plan of the Dissertation

This work may be explored in several ways. A computer scientist whose
interest has been sufficiently piqued to delve further might first want to take the
guickest route from logic to C code. This is the core track shown in Figure 2. This
reader will peruse Chapter 2 to become acquainted with the logic, but might only
casually examine the theoretical details, such as the axioms that are presented.
Chapter 3 describes how programs are specified and gives several example
programs. The specification language, which includes the logic as its major part, is
called Galois* Chapter 5 describes the calculus of procedure composition and
provides the compilation algorithm that generates a procedure composition from a
program specification. The first example in Chapter 8 shows the working of the
compilation algorithm in a simple case and then meticulously steps through the
production of C code for this case.

4 It is named after the French mathematician Evariste Galois, whose youthful exuberance
gave us an important part of number theory, but also led to his unfortunately early
demise.
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A reader who has a logical bent or who is interested in putting the logic

into a theorem prover will return to Chapter 2, to examine more carefully the
details of the logic’s axioms and the presentation of its intended model. Chapter 4
describes how the logic’s intended model is extended for recursively defined
predicates that satisfy certain syntactic restrictions.

The reader who is interested in the details of compilation will return to

Chapter 6 and Chapter 7. Chapter 6 describes a graphical intermediate
representation for programs. It presents an algorithm that analyzes the deallocation
of memory required by a specified program. It also shows how the graphical
representation can be used to display a program’s prerequisite assertion in an
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intuitive fashion, helping the programmer to understand its origin and to
understand how to modify the program specification when this is necessary. (The
computation graph and the procedure composition from Chapter 5 provide
equivalent information, but the former is more useful for certain kinds of program
analysis and display.) Chapter 7 describes the production of C code. For the most
part, it works from the procedure composition of Chapter 5, but there are some
references to Chapter 6. These are easily skipped on a first reading. The second
example in Chapter 8 presents a program that works on a dynamically allocated
data structure. This example is used to illustrate the memory deallocation
algorithm from Chapter 6.

The research described in this dissertation is largely conceptual and
theoretical, though the author hopes that the concepts are interesting, that the
theory is sound, and that the current work will see a practical fruition that provides
real benefit. As usual, the last chapter provides a conclusion, and discusses future
research. Of special note is work now in progress by three colleagues who are
supplying the major effort in implementing a prototype programming environment
based on Galois. Mohan Kumar has produced the core of an initial compiler.
Patrick Ray is working on the user interface and is investigating what
programming methodologies are appropriate to Galois. Bhalchandra Ghatate has
put the logic’s sorts and its axioms into a form acceptable to the Boyer-Moore
theorem prover. Using this theorem prover, he has proved the prerequisite
assertions that are generated by the compiler on some examples. This continuing
work will undoubtedly find where the real problems lie with the theory and
algorithms described here, leading to the inevitable revision of theory based on
practice.

In each chapter, figures, definitions, lemmas, and theorems are
numbered from the same sequence, e.g., a chapter with Figure 1, Lemma 2, and
Figure 3 will not have a Figure 2. Lemma 2 lies between Figure 1 and Figure 3. A
reference to a figure, definition, lemma, or theorems always refers to the chapter in
which the reference occurs unless explicitly stated otherwise. The Glossary will
help the reader with how terms are used in this work.
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2. The Logic

A logic is no more than a language that is made formal through a syntax
that can be automatically recognized, rules of inference that can be automatically
applied, and a recursive set of assumptions, called axioms, about the domain of
discourse. In creating a logic, the hard part is finding a formalization that fits the
intended purpose. Wh#tingsmust be expressible as terms in the logic? What
conceptanust be expressible as predicates in the logic? Whabsitionsmust be
expressible as sentences in the logic? WWhatvledgemust be captured in the
axioms?

The logic described in this Chapter is meant to formalize discourse
about data structures, the kind of discourse that passes between C programmers
discussing a program, or that one reads in programming texts such as Knuth’s [32].
The following English sentences are examples of statements that can be formally
expressed in the logic.

“Alinked list is a set of nodes such that (1) every node has a pointer labeled
next , (2) there is a distinguished head node and tail node, (3) every node in the
set can be reached by chasingrtegt  pointer from the head node, and (4) the
last node has a nuiext  pointer.”

“These two B-trees are the same.”

“The insert operation generates a B-tree that has the following relationship to the
input B-tree: ...”

“This data structure instance has unreachable parts.”
“This data structure instance has dangling pointers.”
“The result of the insert operation satisfies the invariants for a B-tree.”

The axioms of the logic capture basic knowledge about data structures.
Two examples are expressed in English below.

“If two data structure instances in the same memory state have the same address,
then they are either identical, or one is an initial part of the other.”

“There is no data structure instance whose addrd&#dlis .”

17
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In short, the logic is meant to provide a formal language in which one
can define classes of data structures, define input-output relationships for
operations on data structures, and prove things about these classes and
relationships. This chapter provides a formal description of the logic. First, it
places the logic within the range of traditional logics. It then discusses the
syntactic categories — the sorts — of the logic. These are the things that data
structures are made of: characters, integers, floats, addresses, arrays, structures,
and sets. The last half of the chapter provides and discusses the axioms that define
the various base concepts that are needed, and that capture the necessary
knowledge about data structures. (On first reading, the reader might want to only
peruse the actual axioms, to return to them on a second reading, or when chasing a
reference from later chapters.)

To the extent possible, much of the syntax follows that of Cidfa
data structuregx is its address; i is an array, thex(1] is the second element;
and ifx is a structure with a fielablor , thenx.color  is a reference to that field
inx . Because these are all first-rate terms in a traditional, first-order logic, they
follow rules that are somewhat different from those of C. But the resemblance is
much more than syntactic gloss! As described in Chapter 3, the logic is used to
write programs that compile to C, and this compilation (described in later
chapters) preserves the portions of the logic that share the syntax of C.

2.1 Preliminaries

Begin with the sorted, first-order predicate calculus with equality, as
described, for example, in [19jue andralse are 0-ary predicates (boolean
constants). Include the usual logical participles: negation (~), the boolean
connectives], 0, and- for conjunction, disjunction, and equivalence, and the
universal (0) and existential®d) quantifiers. The two symbois andO form a
ternary boolean connective defined as follo8usy O, read “ife theng elseg,” is
equivalent tq( 60¢) O( ~60g)) . The formuladn ¢OTrue is abbreviated te ¢.
Parentheses are used in the normal fashion to associate formulae. When
parentheses are absent, association is derived by the precedence~~,0 O, O,
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0. For convenience, a quantifier can apply to a list of variables separated by
commas. Thug, x,y,z) is short for ox)( Oy)( k) .

As much as possible, this work follows the terminology and
conventions of traditional logic. fermis a constant, a variable, or the application
of a function to other terms. Aatomis the application of a predicate to terms. The
terms to which a function or predicate is applied are calledgismentsA
positive literalis an atom, andegative literalis the negation of an atom. A
formulais a literal, a quantified formula, or formulae combined with the boolean
connectives. Nested quantifiers may not share quantified variables, and if a
variable is quantified in a formula, then everywhere it appears must be within the
scope of one of its quantifiers. A variablé@undin a formula if it appears only
within the scope of its quantifiers, otherwise itree. A logicalobjectis a
constant, function, or predicate. Tsignatureof an object is its sort together with
the sorts required of its arguments, if any. The sort of a term is the sort of its
outermost function. In forming terms, the arguments of a function or predicate
must match in number and sort the object’s signature. (Note, though, that function
and predicate symbols are sometimes overloaded. When it is said, for example,
that equality applies to any two terms of the same sort, the reader is expected to
understand that formally there is an equality predicate for each sort.)

The logic includes an infinite hierarchy of sorts. This hierarchy is
formed from the repeated application of a fwt constructorgo a fewbase
sorts A sort expressioidentifies a sort by name or by the method of its
construction. Sort expressions ag formulae in the logic; rather, they serve to
type terms in the logic. The next section describes the sort hierarchy.

Formally, a sorted logic has disjoint name spaces for constants,
variables, functions, and predicates, and the name of each object tells its sort and
the number and sort of its arguments. In practice, this would require too awkward a
segmentation of the only name space that is actually available, to wit, character
strings. Like C, amndentifieris any string of letters (including the underscore) and
digits, beginning with a letter. Identifiers are pressed into service as variable,
function, and predicate symbols, and as sort names. The sort of a variable is
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declared explicitly at the beginning of its lexical scope, which is either the first
time it appears as a free variable, or where it is quantifisdri*declaratiorhas
the formx:sexp oOrsexpx wherex is the name of the variable aswkp is a sort
expression.

Three of the base sorts ateger |, character , andfloatingPt . The
integers and floating point numbers have the usual functions for addition (+),
subtraction (=), and multiplication (*), and the binary predicates, and provide
the usual order. The domain of the character sort is a finite alpfialBetharacter
constant is written as in C, for exampte, andz' . Characters have a lexical
order, and the symbols, >, , and are overloaded for this purpose, also.

The symbol for equality is. The symbol = is used for a weaker, but
more frequently used, predicate that is true if two data structure instances are equal
in their data, but not necessarily in their addresses. (Data structures are explained
below.)

2.2 Deductive Apparatus

An axiomatization of the integers along standard lines is assumed, for
example, the system Q=in [27]. Any first-order axiomatization of the integers is
semantically incomplete, but because this work does not stray into arcane
mathematics, it is unconcerned with assertions that are independent of the
traditional first-order axiomatizations. The presentation assumes axiom schema
that permit induction of all formulae based on the natural numbers.

This work also assumes a first-order axiomatization of floating point
numbers that includes the appropriate functions for them. Such axiomatization is
clearly dependent on the characteristics of the floating point machine of concern.
Fortunately, the problems of data structures are not tightly coupled to the issues
and algorithms of floating point arithmetic. In what follows, nothing is assumed
about floating point numbers except that they can be tested for equality and have
an order.
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The lexical order of characters is trivially axiomatized with a finite
number of axioms of the forra<b' , an axiom for the transitive closure<gf
and axioms defining, , and in terms ok. This work assumes nothing about
characters except for equality and order.

The focus of this work is how the base sorts are composed into more
complex structures. The characteristics of the integers are important, because they
are used to represent lengths and offsets, and because they provide the basis for
induction. Floating point numbers and characters are carried along as
uninterpreted data, though the availability of identity and order makes them
available as keys. Floating point functions are needed so that programmers can lay
floating point algorithms on top of data structures, but this work makes no
assumptions about the behavior of these functions. Axioms for the complex sorts
are given in the following sections of this chapter.

2.3 The Sorts

In addition tointeger |, float , andcharacter , there is one other base
sort. The domain of thaidress sort is a denumerable set, each element of which
can be viewed as a unique tag. There are no functions that apply to this sort, and
equality is the only relevant predicate. The constant is a distinguished
address value. The base sorts are listed below.

Sort Name Domain

integer The usual integers.

floatingPt Floating point numbers.

character A lexically ordered, finite alphabdi,
address A denumerably infinite set of tags.

An infinite hierarchy of sorts is constructed from these base sorts. This
hierarchy is shown in Figure 1, below. The explanation of the sort hierarchy will
follow the paths in this diagram.
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The Sort Constructors
pair sort with address

@ (strip off address)

4>

—Jp  Sstruct
—>

—p [ (array)
—p  {} (sel)

Address-stripped Sorts  Data Structure Sorts

Set Sorts

Composite Data
Structure Sorts

Every arrow is a constructor

p that creates more complex

Base Sorts Primitive Data sorts from Iess_ complex sort:

Structure Sorts (thus moving up the sort

integer )/ hierarchy), except for the
floatingPt

arrow representing the
character deconstructo@
address

Figure 1: The sort hierarchy.

The least elements in the sort hierarchy are the base sorts. They are

shown in the lower left oval of Figure 1. These do not count as even primitive data
structures, because they lack an address.

An element in a data structure sort is an ordered pairx. The first
value,a, IS anaddress , and it is called thaddress valueThe second valug, is
called thedata value Unary functions & and “@ apply to data structure sorts,
projecting the address and data values. Thugsif variable of a data structure
sort,&x is the address value ofand@xis the data value of. The primitive data

structure sorts are created by pairing an address with each of the base sorts. These
are listed below, and are shown in the lower, middle oval of Figure 1.
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Data structure sort Data value

int integer
float floatingPt
char character
addr address

The sort nameist , float , andchar and the address projection
function& are purposely pulled from C. As therex i anint , & is an address,
and the value of is an integer.

Two other sort constructors resemble type constructors availablé in C.
These are the array constructor andsthet constructor. They both define a data
structure sort in terms of one or more other data structure sorts.

Given any data structure sort expresssexp, Sexp[] is also a data
structure sort expression, called the arrageap. Sexp is called the element sort
of the array. There are three basic functions on arrays: , which returns the
array length; an indexing function, which returns a value in the element sort; and a
function that extracts subarraysxlis an array ofexp, declarec:Sexp[] , and
t,to, andt, are integer terms, these functions are written as shown below.

Function Notation Sort
array length len(x) integer
element projection X][t] Sexp

subarray projectionx[t ..t 4] Sexp[]

In the last function, if o is omitted, it is assumed to be zero, and is
omitted, it is assumed to l(x)-1 . A small abuse of notation is introduced to
make the syntax more like that of C. Instead:®éxp[] orSexp[]x ,itis
permissible to writ&[]:Sexp  Or Sexpx[]

Thestruct constructor aggregates a finite set of values, and allows
their selection byield namelt optionally associates a name with the sort. The
syntax and meaning follows C. For example, the sort expression below defines a
structure that has an address, an array of characters, and an integer, and associates

1 This resemblance is intended. In implementation, instances of these sorts are represented
by instances of the corresponding C data types, as described in Chapter 3.
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the namewordNode with this sort.

struct WordNode {
addr Next;
int ChrCount;
char Word[];

}

The field names are postfix functions on the sort. Thugsif variable
of sortwordNode, declarec:WordNode OrWordNodex , thenx is available to the
functionsNext , ChrCount , andword, and the application of these functions s
writtenx.Next , x.ChrCount , andx.Word . These terms have the sadtr , int , and
char[] , respectively.

Instances of the composite data structure sorts — arragtra¢td
sorts — are ordered pairs, each comprising an address value and a data value. As
with the primitive data structure sorts, the unary functi@isahd “& project
these values. As alway®yx is anaddress . If x has the sorsexp, then the sort ofox
is written@Sexp If Sexp is an array ostruct , @Sexpis the only way to express the
sort of its data value. Used in sort expressions, the opepetarsort
deconstructor, as shown by the downward arrows of Figure 1. @juséreturns
the sort of the data valu@jnt isinteger , and similarly@returns the base sort of
the other primitive data structure sorts. The sorts given bgdiperator are
collectively called theddress-stripped sorts

The logic is also concerned with data structures whose elements are
scattered in memory, tied together only through pointer reference. To describe
these kinds of data structuresetconstructo? is used. Syntactically, the set
constructor works like the array constructor, except that curly brgceare used
instead of square ones. Also like an array, a set aggregates a finite number of
values from some data structure sort. Unlike an array, a set is not indexed, and a set
does not have an address for the set as a whole. For exampgeaif instance of
int} , x could comprise threiet values, with no order specified.

2 The traditional problems of mathematical set theory do not arise, because sets are
stratified by the sort hierarchy. The intended model has only finite sets.
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As usual, the predicate for set membership is writen The sort ok
must besexp{} , wherea has the sogexp , called the element sort. The element
sort of a set must be a data structure sort. (Sets of sets and sets whose elements
have a base sort are not allowed.) The basic set functions are listed below.

Function Notation Sort
set cardinality [X] integer
set construction  {a, b} Sexp{}
set union xdy Sexp{}
set intersection Xny Sexp{}
set difference X=y Sexp{}

Sets are not data structures. But a set can be included as afield in a
struct , and through this, become part of a data structure sort. Evety must
have at least one field that is not a set. The inclusion of a set in a data structure is
conceptually important. As the next chapter will discuss, it provides the
programmer a way to express what non-contiguous pieces belong with a data
structure, and through this, how memory is allocated and released. A set’s
inclusion in astruct  does not constrain how the set’s elements are laid out in
memory. (Thinking close to the implementation level, a programmer should view
the layout of atruct as unchanged if set fields are added or deleted. Data
representation is discussed in Chapter 3.)

Sets complete the traversal of the sort hierarchy as shown in Figure 1.
In that figure, every arrow except that for the deconstri@toeates a more
complex sort whose instances are aggregates of instances of simpler sorts. Thus,
the hierarchy is one @omposition (It isnotan abstraction or inheritance
hierarchy.) Domains for the sorts are discussed below. Later sections give the
axioms that characterize these domains and the relationships between data
structure instances, their parts, and their addresses. These axioms will reflect much
of a programmer’s intuitive understanding about how data structures and arrays
are laid out in memory.

The array, structure, and set functions described above are those that are
common for these constructs. Section 2.7 describes some functions for modifying
parts of data structures and sets.
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It is important to keep straight the role played by sorts in a logic. The
sorts arenotdefined in the logic. Rather, they are a part of the logic’s definition.
They syntactically characterize terms, and semantically characterize the intended
domains. When a variable’s sort is declared, for exampsauct{intV;
intH;} , this doesiotdefine a new sort. The unique sort that has the postfix
functionsv andH returningnt values, and no other postfix functions, is
permanently part of the sort hierarchy. The declaration merely says that the
variablept has this sort, and such declaration is needed only because it is too
cumbersome to reserve disjoint sets of variable names to each sort. Associating a
sort name with struct  definition is merely a notational convenience that saves
repeatedly writing out the structure definition.

2.4  The Intended Model for the Logic

The standard integers are the intended domain fastéger  sort. A
finite character alphabet and a set of floating point numbers convenient to the
implementation are the intended domains forhaeacter ~ andfloatingPt
sorts. The natural numbers and the special walue form the intended domain
for theaddress sort. These are tHemse domains

Structures and arrays aggregate simpler data values sequentially. Sets
aggregate simpler data values without regard to sequence. The intended domains
for the sort hierarchy are created from finite lists and sets, using the domains above
for the base sorts. Denote a list with angle bracketsi— <c>— and a set with
curly brackets — §, 6, c}. Sequence is significant in the first but not the second.
Thus, {a, 6} ={0b,a}, but<a, s> <, a>. Theintended universes the smallest
collection that satisfies the following recursive definition. (1) The empty set and
the empty list are in the intended universe. (2) Elements of the base domains are in
the intended universe. (3) Every finite list of and finite set of elements in the
intended universe is also in the intended universe. The narrative below carves this
universe into domains for the sorts. It also gives an intended interpretation to the
functions discussed so far.
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The sorint has as its intended domain all ordered pairsx& where
a, the address value, is an address otherNban, andx, the data value, is an
integer. Fokhar , float , andaddr , the data value ranges over the character,
floating point, and address domains, respectively.

The array sordexp[] has as its intended domain all ordered pairs of
the form <, <eg,...e,_1>>, Wheres is an address other thBOLL, eg=<a, v> (if
eqis present), each) is in the intended domain eéxp, and no address value
appears in bothj ande; when i j. I denotes &, <e,...en_1>>, then&x denotes:,
len(x) denotes n, andi] denotes; for O i<n. Similarlythe structure sort with
fieldsf y,..f , whose sorts argexp,,... Sexp,, has as its intended domain all ordered
pairs of the form #, <e(),...en>>, Whereej=<a, v> forf; the first non-set field,
eache; is in the intended domain eéxp; , and no address valueappears in both
ejandejwhenij. Ik denotes €, <e,...en>>, then&x denotes: andx.f ; denotes
ej. The set sorsexp{} has as its intended domain all finite setg {.c,_1}, where
eache; is in the intended domain séxp and no address valueappears in both;
andej wheneje;. If x denotes {,...en.1} andy denotes;, thenjx|=n andyOx
hold.

Notice that each value in the intended domain of a data structure sort is
an ordered pair whose first element is an address., lfxis a value in the
intended domain of the data structure sekb, thenx is a value in the intended
domain of@sexp If x is composite, i.e., i®Sexpis not one of the base sorts, then
is also the address of the first non-set componenpt of

Consider amt arrayx, of length two, whose first integer value is 53
and whose second integer value is 32. The value of thexamape intended
domain is a list, shown in the table below, wheresthare address values. Other
terms involvingx, their sorts, and their values, are also shown.

term sort value in intended domain
X int[] <ag, <<ag, 53>, <1y, 32>>>
&x address a,

@x @int[] <<aq, 53>, <1y, 32>>

x[0] int <ag, 53>
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&x[0] address ag
@x[0] integer 53
As a second example, consider the smutt Foo {int count;
int values{}:} . An instance of this sort is a structure whose first element is an

integer, say 2, and whose second element is a set of integers, say {42, 53}. Some
terms involvingy are shown below.

term sort value in intended domain

y Foo <a,, <<a,, 2>, {<az, 53>, <a,,
42>}>>

&y address a,

@y @Foo <<a,, 2>, {<aj, 53>, <a,, 42>}>

y.values int{} {<ajz, 53>, <a,, 42>}

Axioms that characterize the logic are given in the remainder of this
chapter. The above domains and interpretation of functions, together with the
usual understanding of equality on sets and lists, satisfy these axioms, and thus
provide a model of the logic. Models of the logic are discussed in more detail in
Chapter 4.

2.5 Axiomatic Characterization of the
Sorts

The axioms below characterize the compositions that form the sort
hierarchy. These axioms describe when composed sorts are equal, and they
describe the behavior of the functions that project the sorts’ components. We
assume that the base sorts are already axiomatized. (Remember that theisymbol
is used for strict equality.)

For each data structure sort, characterize equality and fidthidl addresses:
1) xy - &x By D@xOQy
(2)  &xNULL

For each array sort, characterize equality and define subarrays:

(3) len(x)0
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(4) @y -
len(x) Oen(y)
O ( Oi:integer)(0 i<len(x) O x[i]  Oy[i])
(5) 0jk<len(x) O len(x[j..k])=(k—j+1)
O len(x[j..k])=0
(6) (Oi<len(xj..k]) O (X[j..KD[I]=x[+i]

For each structure sort, with fielflg, ...f ,, characterize equality
(7) @3day - xf gyf o O.. Oxf ,Onf 4

For each set sort with element sBexp, and every singletofa} , characterize
equality and the set operations:

8) xy = (0Oz:Sexp)(z [Ox = z Oy)

(9) (Oz:Sexp)(z OxOy « (z Ox Oz 0Oy))

(10) (DOz:sexp)(z Oxny <= (z Oy Oz dy))

(11) (Dz:Sexp)(z Ox—y < (z Ox O~z Oy))

12) x| O

(13) |[EMPTY|=0

(14) KHajl=1

(15) Ix Oyl = [x|+]yl-Ix ny|

Like most of the axioms that will follow, the above axioms are actually

axiom schema. Each axiom is repeated for each sort to which it applies. The

intended universe trivially satisfies the above axioms, when the functions are
interpreted as described in Section 2.4.

The next set of axioms define several predicates that relate composite
data structure instances to their parts. These axioms formalize the important notion
of a data structure part beingachableby offset calculation and pointer chasing.
These predicates can be organized according to their logical strength, indicated by
the arrows in Figure 2. (One predicate is said tgecally strongerthan a second
if it entails the second on the same arguments.)
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A data structure instance is part of an instance
y if itis a field, an array element, or a set member oPartOf(x, y)
y, or (transitively closing) if it is part of a part gt

A data structure part issachableif it can be
referenced through a combination of array RPartOf(x, y) LPartOf(x, y)
subscripting, field extraction, & pointer reference. A part is alost part

A data structure part idirectly reachable if it is not reachable
if it can be referenced through array DPartOf(x, y)
subscripting & field extraction, alone.

A data structure part is aimitial part

if it is the first element of an array, the InitialPartOf(x, y)
first non-set field of a structure, or if it

satisfies the transitive closure of this condition.

Figure 2: The parts predicates for data structures.

The axioms for these predicates are given below. For one data structure
instancex being a part of a second instagd@ notion formalized in the predicate
PartOf(x, y) ), an initial part of anotherr{tialPartOf(x, y) ), and a part of
another directly reached by offset calculatiordrtof(x,y) ), the axioms are
organized by the sorts of the arguments. The predrRreOf extends the
predicateDPartOf with reachability through pointer reference. A data structure
part islost, a notion formalized in the predicateartof , if it is not reachable.

Forx of data structure so&exp, andy of sortSexp|]

(16) InitialPartOf (x, y) = O<len(y) Ox y[0]
(17) PartOf (%, y) = ( O:integer)(0 i<len(y) Ox Oy[iD
(18) DPartOf (x,y) = ( O:integern)(0 i<len(y) Ox Oy[iD

Fory of a structure sort, the first non-set fielg all the fields , g,...h of y that
have the same sort aswhere Axioms (19) and (21) apply onlyifis not a set:

(19) InitialPartOf (x, y) = X Oy.f g
(20) PartOf (x,y) - x Oyf Ox0Oyg O.. Ox Oy.h
(21) DPartOf (x,y) = x Oy.f Ox[Oyg 0O.. Ox Oy.h

For every data structure sort (and for Axiom (23), every set sort):
(22) InitialPartOf (X, x)
(23) PartOf (x, x)
(24) DPartOf (x, x)
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PartOf subsumes membership for sets. ¥of sortSexp andy of sort
Sexp{} :

(25) PartOf (x, y) = X Oy

Forx andy with data structure sorts (gra set sorts, faPartOf ), where the sort
of x is lower in the sort hierarchy than the soryobut none of the cases above:

(26) InitialPartOf (x, y) -
( Oz)(InitialPartOf (x, z) O InitialPartOf (z, y))

(27) PartOf (x, y) = ( Oz)(PartOf (x, 2) O PartOf (z, y))
(28) DPartOf (x,y) =
( [z)(DPartOf (x, z) O DPartOf (z, y))

Forx andy where the sort of isnotlower in the sort hierarchy than thatygfnor
wherex andy have the same sort:

(29) ~InitialPartOf (x, y)
(30) ~PartOf (x, y)
(31) ~DPartOf (x, y)

Fory having a data structure sarthaving a set or data structure sort lower in the
sort hierarchy, and every s@exp lower in the sort hierarchy than thatyof

(32) RPartOf (x,y) = DpartOf (x, y)
U ( Op:addr)(  [u:Sexp)(
DpartOf (p, y) Op=&u
0 PartOf (u,y) 0 RPartOf (x, u)

)
)

Fory having a data structure sarthaving a set or data structure sort lower in the
sort hierarchy:

(33) LPartOf (%, y) = PartOf (x, y) O~RPartOf (x, y)

The parts predicates above can be used to formalize some common
notions about data structure instances. A data structure instareagableif it
has no lost parts. An addrespoints intoa data structure instance if the instance
has a part whose address value eqaia#sdata structure instance hadangling
pointerif it (1) has a part that is an address, and (2) the value of this address neither
points into the data structure instance novusL. Two data structure instances are
disjointif they have no common components. These notions are formalized in
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predicates defined below.

Fory having a data structure sort, and every data structure or set sort
Sexpg,...Sexp  ,, lower in the sort hierarchy:

(34) Navigable (y) = (
(Ox:Sexp g)(PartOf (x, y) O RPartOf (%, y))
o .
O (Ox:Sexp p)(PartOf (x,y) O RPartOf (x, y))

)

Fory having a data structure sort, and every data structure or set sort
Sexpg,...Sexp  ,, lower in the sort hierarchy:

(35) Pointsinto (p, y) = (
p=8y
O (Ox:Sexp g) (PartOf (x,y) O Pointsinto (p, X))
o ..
O (Xx:Sexp p) (PartOf (x,y) O Poaintsinto (p, x))

)
(36) HasDangles (y) = ( Op: addr)
(p NULL OPartOf(p, y) O~Pointsinto(p, y) )

Forx andy having a data structure sort:
(87) Disjoint (X, y) = ( Op: addr)
( ~(PointsInto(p, x) O Pointsinto(p, Y)))

The next chapter will show how invariants for data structure classes are
defined in the logic. The above predicates are useful in describing desirable
properties of data structures. It is generally good if all parts of a data structure are
reachable, and if it has no dangling pointers. Thus, a programmer would want to
prove in the logic that the invariants defined for a data structure type logically
entail these desirable properties.

The axioms given so far place little restriction on address values. As
described for the intended model, composite data structure instances have the
property that the address of the composite instance equals the address of its first
non-set component. Except for this, addresses do not occur multiple times within a
single data structure instance. The axiom below characterizes these restrictions.
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Forx andy having data structure sorts lower in the sort hierarchyzhan

(38) (PartOf(x,z) O PartOf(y,z) O&x=&y) O
(InitialPartOf(x,y) O InitialPartOf(y,x))

The axioms above characterize the intended model. The next few
sections will present axioms that define other functions and predicates, but these
axioms will not constrain the intended domains nor the interpretation of functions
and predicates defined above.

2.6  Comparing Data Structures

Because the logic treats a data structure’s address as a contained piece
of information, if two data structures are equal in the logic, they must have the
same address. They are the same in the strongest possible sense, for example, in
the sense of Fortran equivalence. This notion of strict equality is not very useful
for talking about data structures, where one usually wants to discuss instances that
may occupy different memory locations. (For this reason, the syndmiotes
strict equality, and the symbol = is reserved for a different predicate described
below.) This section defines some weaker but more useful notions of data structure
identity.

Data Equality

The predicate fodata equality=, holds of two values in a sort if they
are equal, ignoring any address values they contain. The axioms below define data
equality in terms of strict equality. It is defined first for the base sorts, and then for
each of the data structure and set sorts.

Define =, for each base sort:
(39) x=y < x Ly
Define =, for each primitive data structure sort:

(40) x=y - @xO@Qy
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Define =, for each array sort:

(41) x=y < (
len(x)=len(y)
O (Oiinteger)(0 i<len(x) O x[i]=y[il)

)
Define =, for each structure sort with fiefdg...f
(42) x=y = xf g=y.fq O.. Oxf ,=y.f,
Define =, for each set s@®@exp{} :
(43) x=y < (
(x CEMPTY Oy CEMPTY)
O (Cu, v:Sexp)(u Ox Ov Oy Ou=v Ox—{u}=y—{v})
The order predicates >, , and are extended to the data structure sorts
char , float , andint by applying them just to the data values of these sorts. Unlike
data equality, these are not percolated up the entire sort hierarchy.

The motivation behind reserving the symbahould now be clear.
Whetherx andy have the base saiteger orcharacter , or the data structure sort
int Orchar , the formulas=y andx<y have their customary meaning. The symbols
=andOhave identical meaning on the base sorts. By convention, the latter is used
only with data structure and set sorts, and can be read “equal in both data and
location.”

Data Structure Isomorphism

Programmers have a common notion of two data structure instances
being “the same” when their non-pointer data values are equal and when their
pointer values correspond in the “right sense.” Operationally, this sameness can be
viewed as equivalence under the transformation that preserves a data structure
when it is relocated in memory and its pointers are updated accordingly. For
example, if an element of a linked list is relocated in memory, then the pointer to it
from the previous element must be changed to reference the new location. Given
this tracking of the relocation by the pointers involved, the new data structure is
“the same.”
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The informal description in the previous paragraph of what it means for
two data structure instances to be “the same” appeals to a programmer’s intuition.
Unfortunately, this crucial concept is left informal in most texts on programming
and programming languages. Consider the move from addresses to “links” made
by Knuth, when discussing the representation of a hand of cards on pages 230-231
of [32]:

“The memory locations in the computer representation are shown here as 100,

386, and 242; these could have been any other numbers as far as this example is
concerned, since each card links to the next. ...

“The introduction of links to other elements of data is an extremely important idea
in computer programming; this is the key to the representation of complex
structures. When displaying computer representations of nodes it is usually
convenient to represent links by arrows, ... The actual locations 242, 386, and 100
(which are irrelevant anyway) no longer appear ...”

The “links” that Knuth discusses are an abstraction; they are pointers
embedded in data structures as preserved under the appropriate transformation
when data structures are relocated in memory. The programmer has developed the
right intuition of this if the programmer can make programs that work and can
discuss them with other programmers.

This notion of “sameness” is made formal in the logic as a binary
predicate calledata structure isomorphisniwo instanceg andy of a data
structure sort are isomorphic, writtety , if they are the “same” in the sense
discussed above, i.e., if a C programmer would declare them the same modulo the
contingent location of their parts in dynamic memory. This predicate is important
to programming in the logic, since it is heavily used to specify changes to data
structures, as described in the next chapter.

There are several possible approaches to defining data structure
isomorphism. The one used below makes use of two lists of pointers, which for
two instances of a data structure sort must act as parallel indices, to wit, the i-th
pointer from the first list and the i-th pointer from the second list (1) reference
analogous parts of the first and second data structure instances, and (2) are equal to
analogous pointers from the first and second data structure instances. A part of the

www.manaraa.com



36

first data structure instance is analogous to a part from the second data structure
instance if it is obtained by using the same array subscripts and the same field
references. The definition of “paired indices” begins the formalization of these
concepts.

Paired indices are same length address arraysa@dni ) neither of which
repeats values:

(44) Pairldx (xldx, yldx) = (
len(xldx)=len(yldx)
O (0Oi,j: integer)( 0 i,j<len(xldx) O (
(xIdx[i]l=xIdx[j] O i)
O (yldx[i]=yldx][j] O ig)

)
)

The next few axioms define when data structure instanaedy of the
same sort are analogous relative to paired indices for them. For instanicgs of
orint , the paired indices must refererxcandy from the same subscript, and
andy must carry the same data value. Forddwe sort, the latter condition is
different: a common subscript must select an address in the first index thatxequals
and a value in the second index that equals

Define “analogous relative to paired indices” Xoandy of sortint, float , or
char:

(45) AnaP (x,y, xPtrs, yPtrs) = (
Pairldx (xPtrs, yPtrs) Ox=y
O (O:integer)(
0 i<len(xldx) O xldx[i]=&x Oyldx[i]=&y
)
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Define “analogous relative to paired indices” oandy of typeaddr:

(46) AnaP (x,y, xPtrs, yPtrs) = (
Pairldx (x, y, xPtrs, yPtrs)
O (O:integer)(
0 i<len(xldx) O xldx[i]=x Oyldx[i]=y

)
O (O:integer)(
0 i<len(xldx) O xldx[i]=&x Oyldx[i]=&y

)

The next three axioms extend the notion of a pair of data structure or set
instances being “analogous relative to a pair of pointer lists” to structures, arrays,
and sets.

Define “analogous relative to paired indices”foandy in a structure sort with

fieldsf q,..f :
(47) AnaP (X, y, xPtrs, yPtrs) ¢
AnaP (x.f g, y.f g, xPtrs, yPtrs)
o .
O AnaP (xf 4 vy.f , xPtrs, yPtrs)
)
Define “analogous relative to paired indices”%oandy in an array sordexp[] :
(48) AnaP (x,y, xPtrs, yPtrs) = (
len(x)=len(y)
O ( Oiinteger) (0 i<len(x) O

AnaP (x[i], y[i], xPtrs, yPtrs)

)

Define “analogous relative to paired indices” oaindy in a set sorSexp{} :

(49) AnaP (X, y, xPtrs, yPtrs) = (
(Ou:Sexp)(u Ox O
(Ov:Sexp)(v. Oy OAnaP (u, v, xPtrs, YPtrs))
)
0 (Ov:Sexp)(v Oy O
(Ou:Sexp)(u Ox OAnaP (u, v, xPtrs, YPtrs))
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If a pair of sets are analogous relative to paired indices, then there is a
bijective mapping between the sets. The indices match elements from the two sets
according to shared index subscripts. Two data structure instances are isomorphic
if there exist a pair of indices with respect to which they are analogous.

Define data structure isomorphism, for each data structure sort:

(50) xiy = ( xPtrs, yPtrs: addr[])(
AnaP (x, y, xPtrs, yPtrs)
)

Note that analogous pointers franandy must simultaneously (1)
equalNuLL, (2) reference analogous partsxandy, or (3) fail to reference any
part ofx andy.

This section has defined three different binary predicates for comparing
data structures. They are summarized in Figure 3, below. The arrows indicate the
strength of these predicates.

Data equality: X=y Xy Data structure isomorphism:
Data values are equal. Non-pointer data is equal, and embed
pointers reference analogous parts.

Strict equality. x Oy

Figure 3: Different relationships between data structures x and y.

Note that data structure isomorphisnmag logically stronger than data
equality. If a pair of data structure instances have embedded pointers, data equality
requires analogous pointers to be equal, while isomorphism requires these pointers
to reference analogous parts of their respective data structure instances. Strict
equality is, of course, stronger than both.

2.7 Functions that Modify Composite
Values

The functions described in Section 2.3 for data structures decompose
the composite sorts, that is, they return pieces of a composite value. The set
functions described there are the usual ones for combining sets. Functions that
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generate data structure and set instances by modifying parts of existing data
structure and set instances are very important to programming with the logic.
These functions are described below.

LetA, i, andx be terms whose sorts aexp[] , integer , andSexp,
whereSexp is an arbitrary data structure sort. The array valued function below
replaces the data of an array element:

Function The resultis ...
A{[il=x} A , With the data of its i-th element replacedxby

The structure-valued function defined below replaces a fiel&k heta
structure term with a field, whose sort isSort , and le be a term of SoRSort .
The notation for replacing a field is shown below.

Function The resultis ...
R{f=x} R , with the fieldf replaced by.

Like all functions, those above can be chained. TRUE=1}{[1]=2}
is an array that has 1 and 2 as its first two elements, and with all other elements
identical to those o&. Again, notation can be abused to make it easier to write
these chained functions, and to move the syntax closer to C. First, adjacent right
and left curly bracketg{ , can be replaced with a semi-colon. The term above is
then writtenaA{[0]=1; [1]=2} . Second, the left curly brace can be move left past
indices, set elements, and field names, with dots inserted where needed to delimit
field names. Thu[0]{color="r} can be writtem{[0].color="r'} . These
short-cuts are most useful when combined. Consider, for example, the term below,
which replaces an element in an array in a structure, and then sets an index to that
array element, in the same structure.

A{
list[j]=x;
mostRecent =j;

}

The next axiom defines the array replace function. The varialaled;
areinteger , and the other free variables belong to the concerned array sort. The
results of the function are not defined for array indices that lie outside the array’s
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range. The function{[jl=x}  creates a value that is identicaht@xcept that the
data value of the j-th element equals

For each array sort:

(51) bC&{[j]=x} = (

j<len(a) O (

len(a)=len(b)
O (Oi)((0<ilen(a) Oij) 0O afil=b[j])
O &aljJ=&blj] Ob[j]l=x

)
)

The two axioms below define the function that replaces afield in a
structure. The variablesandb belong to a structure softjs a field in the sort,
do,--9n are the other fields, amds a variable that has the same soft.ass above,
b is defined as strictly equal &p except for the field, which becomes data equal
tox. (If f is a data structure rather than a set, then it retains its address value. The
first axiom handles the case where a data structure, the second, wheisea
set.)

For each structure sort with fiellsandgg,.. g, wheref is not a set.

(52) bCa{f=x} < (
agog=bgo O.. Oag ,=b.gy,
0O &af=&b.f Ob.f=x

)

For each structure sort with fiellsandgg,.. g, wheref is a set.

(53) bMa{f=x} < (
agog=bgo O.. Oag ,=b.gy,
O b.f=x

)

There are some more notational shortcuts that need to be discussed.
First, whenever a component appears on the right-hand side of an equal sign in the
above functions, it refers to the value of the term to which the function applies.
Consider the term below.

A { list[k]=list[i]}
{ list[l]=list[j]}
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The termiist[i] is short forA.list[i] . The termist[j] is short for
Allist[K]=list[i]}.list[j] . Thus, ifj=k , the result of the two function
applications will be a term wheliet[l]=list[K] . Another way of viewing this

is that the modifications are applied in the order listed. Note that the convention
about replacingf with; makes the term above equivalent to the term below.

A { list[k]=list[i];
list[l] = list[j] }

Modifying Sets

With sets, it is convenient to use notation like that for the array and
structure functions to denote replacing an element. erss} is taken to be
(S{e}) 0O{x} . Thisis extended to the fields or array elements sb that
S{e.f=x} istakento be&s—{e}) O{e{f=x}} . Inthe terme{f=x}} , notice that the
outer brackets indicate set construction, and the inner brackets indicate the
application of a replace function.

As with structures, several elements of a set are often modified in the
same term. Because of this, it is useful to define notation for adding and removing
elements from sets.

Function Meaning
Af«x} A O{}
A{>x} A -{x}

The conventions regarding the use of curly braces that apply to
structure and array updates carry over to the above notation for sets. This results in
a more terse and intuitive notation. Consider the term below.

A{

«X;

y.f=g;
»Z,

}

This can be read: “the setwith the element added, the field of the
elemeny replaced by, and the elementremoved.”
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The use of curly braces for both set construction — &gx} — and
to indicate function application — e.@«x} — is an unfortunate compromise in
the notation. It is ameliorated by the fact that set construction is almost never used.
The replacement ¢f by; is only allowed when the curly braces are used for
function application. When the curly braces are not needed to associate several
function applications, they can be omitted for the set function s above. For
exampleA{«x} can be abbreviated rex.

2.8  Characterizing Memory States

The logic is intended to characterize and support reasoning about data
structures. There are two contexts in which programmers typically reason about
data structures. First, they can reason about data structures generally, without
regard to any particular memory state. Second, they can reason about data
structures with reference to a particular memory state. The logic described so far
reflects this first context. The intended model contains as its “domain of discourse”
all data structure instances that residangmemory state anytime. This model
contains too many values to characterize a fixed memory state. For example, for an
address:, the twoint values, €, 3> and <, 4> are both in the intended model.
Given a fixed memory state, the value at the addressild be 3 or 4, but not both.
When reasoning about a fixed memory state, we would like to be able to conclude
from the fact that twimt values have the same address, that therefore they have
the same value.

An axiom is given below that, when added to the logic, characterizes a
fixed memory state. This axiom is called #pecific state axionit is not
considered part of the logic, except when expressly noted.

Specific State Axiom:Forx andy with data structure sorts:

(54) &x=&y < InitialPartOf (x, y)

Note that the above axiom constrains models of the logic. As noted
above, the intended model of the logic does not satisfy the specific state axiom,
because it includes too many data structure instances.
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Given a model of a sorted logic, a submodel is an interpretation of the
logic (1) that has for each sort a domain that is a subset of the sort’s domain in the
larger model, (2) that preserves the interpretation of constant, function, and
predicate symbols, and (3) that makes true all theorems. For the logic presented
here, (1) and (2) imply (3), because none of the axioms present existential
requirements on the domains.

Memory states are identified wispecific state submodead§the
intended model. Apecific state submodislany finite set of mutually disjoint data
structure instances augmented with (1) all the components of these instances, to
make the domains closed under the decomposition functions, and (2) all valid
finite compositions of these instances. The original finite set of data structure
instances is called the basis. Specific state submodels satisfy the specific state
axiom because the initial set of data structure instances are mutually disjoint, so
any common addresses must come from data structure composition.

Consider a memory state as (1) any finitessef addresses, called the
address space, and (2y@ntent functiorv that maps this set into the discriminated
union of the base sorts. Any such memory state generates a unique specific state
submodel that has as its basis all valuesz<{a)>. Conversely, any specific state
submodel can be mapped into a unique memory state. A specific state submodel
assigns through its primitive data structure instances a unique datac\taleach
address value. The set of addresses in the primitive data structure instances are
the address space, and this assignment is the magpphgure 4 shows this
mapping for a specific state submodel that has one data structure instance as its
basis.

<ag, <<ag, a1>, {<aq, 2.3>, <1y, 3.0>}, <az, NULL>>>

4 0 2.3 3.0

1 2 3 4 5 6 7 8 9

Figure 4: A specific state submodel whose basis has one data structure
instance.
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The above discussion shows that there is an equivalence between (1)
memory states as mappings from finite address spaces to values in the base sorts,
(2) finite sets of mutually disjoint data structure instances, and (3) a particular
class of submodels of the intended model of the logic. This equivalence is used in
discussing the procedural semantics of programs, in Chapter 5.
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3. Programming with the Logic

A logic alone does not provide the programmer enough expressive
power to describe a computation. Even a logic programming language such as
Prolog, in which a program is a set of clauses in Horn clause logic, adds more
support for programming than might appear at first glance. Prolog relies on a
particular search algorithm that attempts to satisfy goals according to their textual
order (something that is logically irrelevant), and provides the programmer with a
variety of non-logical constructs for modifying the program’s execution, such as
assert() ,andretract() . These constructs are syntactically treated as predicate
symbols, but semantically they act to modify a Prolog program’s execution rather
than to express a logical assertion.

Kowalski [33], discussing the move from procedural languages to
logical languages, understood tkamethingnust be added to logic in order to
create programs when he wrote:

Algorithm = Logic + Control

One goal in the design of Galois was to permit the programmer to add as
little somethingas possible to create data structure programs. In thinking about
this, the Hoare calculus[25] became an inspiration. In it, the behavior of a program
P is expressed using a precondition and postcondition expressed in logic:

{Precondition} P {Postcondition}

This can be taken as a form of program specification. A programming
environment that generates code from this specification would generate the
programP given the precondition and postcondition. The logic of the previous
chapter provides the expressive power necessary to write preconditions and
postconditions for data structure programs. Galois adds to the logic the ability to
specify a program in a form very similar to the Hoare calculus. Thus:

Galois = Logic (Chapter 2) + Program Specification (Chapter 3)

45
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The compilation process turns a program specification into an
executable procedure (C function). In Galois, the postcondition specified for a
program is always a predicate defined in the logic. The desired program is said to
realizeits predicate and teatisfyits specification.

The design of Galois reflects the philosophical principle that, in turning
logic to the purpose of programming, the syntax and semantics of the underlying
logic should not be sullied. Predicates are defined in a purely logical framework,
and are then used to specify programs. Program specification does not affect the
logical meaning of the predicates. In this regard, Galois provides a more pure form
of logic programming than Prolog. As noted above, Prolog relies on programming
constructs that are made to syntactically appear as part of the underlying logic,
even though they have no meaning in the logic, and these affect the meaning of the
clauses in which they appear in subtle ways.

Section 3.1, immediately following, takes a closer look at program
specification. The subsequent two sections discuss how Galois programs are used
in applications and how they are prepared. Section 3.4 gives the syntax and
explains elements that were not previously described. Section 3.5 gives some
simple examples and provides further discussion. Section 3.6 discusses pointers
and memory management. It describes how programming in Galois can eliminate
the common programming errors related to these. Section 3.7 states some
restrictions on writing programs in the logic.

3.1 Introduction to Program Specification

As adumbrated above, a Galois specification for a program P resembles
an assertion in the Hoare calculus: {precondition} P {postcondition}. The Hoare
calculus does not express termination properties, nor some other execution
properties that are described below. In Galexecution propertieare appended
to the end of a program specification. The example below shows a Galois
specification for a program that searches a sorted list. (The preconditions and
postconditions for this program are defined in Section 3.5, below.)
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{AscPts (List)}
doAscPtsSearch (in List, in Key, in Prev, out Here)
{AscPtsSearch}terminates.

This example shows the five pieces of information in a program
specification. These are:

(1) Program namedoAscPtrSearch . This is used to identify the program. Often,
a program that realizes the predicht® is namedioFoo.

(2) Argument modesn & out . The first three arguments to the program are input
arguments, while the last is an output argument. In the Hoare calculus, the text of
a program determines variable use. Because Galois generates a program from the
specification, the specification must describe the use of the program’s arguments.

(3) Precondition AscPts(InList) . As in the Hoare calculus, the precondition is
a logical formula that must hold on entry to the program. The free variables in the
precondition must be a subset of the input arguments to the program.

(4) PostconditionAscPtsSearch . The postcondition is the name of a predicate
that has the same arguments as the desired program. The generated program,
when executed, attempts to make the postcondition true. If it doessoc@eds
and returns status indicating success. (Program execution is discussed in more
detail below.)

(5) Execution propertiesterminates . This requires the specified program to
terminate even if, for a particular execution, there are no values for its output
arguments that satisfy the postcondition.

An argument’snodedescribes how the argument is used when the
program is executed. There are three argument modes:
in A pure inputargument passes a value to the program when the
program is executed. Its value is not changed by execution.

inx A consumed input argumepasses a value to the program, and the
value’'s memory is consumed (deallocated) by the program’s
execution. A consumed input argument must have an addressed sort.

out An outputargument returns a value from the program.

The pure input arguments and the consumed input arguments are
collectively called thenput argumentsand this set is written. A set of values
bound to the input arguments is calledrgput tuple The pure input arguments
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and the output arguments are calledrdsilt argumentsand this set is writteqQ.
A set of values bound to the result arguments is caltedudt tuple The set of
consumed input arguments and the set of output arguments are Wridtieto
and values bound to these sets of arguments are caltedsamed input tuplend
output tuple Notice thatr andQ provide complete information about the
arguments’ modes, since the pure input arguments-agethe consumed input
arguments arén Q, and the output arguments ager.

Input values must be bound at the start of the program'’s execution, and
result values are bound on its return. A result tuplalisl for a particular
execution if it equals the input tuple on their common arguments and together with
the input tuple it satisfies the program’s predicate, i.e., the postcondition. A
program performs a destructive update by creating output values from consumed
input values.

The programmer can specify several kinds of execution properties for a
program. A program is:

sound if it generates only valid output tuples.
effective if it generate®neoutput tuple, whenever a valid output tuple exists.
complete if it generatesll valid output tuples (up to data structure

isomorphism).
terminates if it never enters an endless loop.
It is assumed that the programmer always desires a sound
implementation. In addition, the programmer can specify that the program is

effective or complete, but not both. These execution properties are defined
formally in Chapter 5.

3.2 Using Galois Programs

Programs created through Galois are linked into and invoked by an
application written in a traditional programming language. Chapter 7 shows code
generation targeting C. Each Galois program becomes a C function. Though this
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work uses C as the example target language, there is nothing that prevents code
generation in Pascal, Ada, or other similar languages.

When used in an application, Galois programs are guaranteed to return
only output values that satisfy their postcondition, providing the precondition
holds when the Galois program is executed and providing the application abides by
conventions for data representation and manipulation. (This is discussed some
below and in more detail in Chapter 5.) Thus, Galois provides a way to build
verified component libraries for manipulating data structures that are used in
applications written in traditional languages.

A Galois program realizes a predicate. A new predicate is often defined
in terms of existing predicates. When such a predicate is used as a postcondition in
a program specification, the compiler builds a program that invokes programs that
were previously compiled for the component predicates. (See Figure 1, below.)
The programmer does not have to worry about whether these program’s
preconditions hold or whether the calling program abides by the conventions for
data representation and manipulation. When the compiler constructs a Galois
program that calls other Galois programs, it guarantees these things. In this
fashion, Galois can be used to build verified component libraries that deal with
complex and intricate data structures, and the application programmer need only
worry about correctly using the programs that form the interface.

Definition ofMerge predicate:

Merge (...) = ( The compiler uses the
Olnsert ... — Compiler pinsert  program to build
) thepMerge program.
~ ~ Application
Program
pMerge
Galois
Procedure| | preplace Insert New
Library Prep P - P
pSearch pNew plnsert
- J

Figure 1: The use of Galois programs.
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For Galois programs targeted to C, there is a close correspondence
between the logical sorts and C types. Values in the sdtits char , int , and
float are represented by C values with tyyed *) 1 char ,int 2, andfloat
Arrays are represented as C arrays. A value in a structured sort is represented by
the corresponding C structure, with set-valued fields omitted. Each element of a
set is represented by a C structure.

3-

When a Galois program executes, it deallocates the memory occupied
by its consumed input arguments and allocates memory for its output arguments.
This memory management takes place in the C heap using standard C library
functions. Thus, any value the application passes as a consumed input to a Galois
program must have been allocated on the heap. (The easy way for the application
programmer to guarantee this is to pass for consumption only values that have
been produced by other Galois programs.)

Data representation is not an issue for Prolog, LDL, or most other logic
languages because they are self-contained and each implementation can choose its
own data representation. Galois is meant to work with data structures that are
understood by C programs (and C programmers!).

3.3 Program Preparation

Ideally, the Galois compiler would be able to accept any predicate
definition and any program specification and produce a program that satisfies the
specification. The compilation process is not so simple, for several reasons. Most

1 This work uses C as described in [29]. It includeswvihid*  type.

2 The Cint type has an obvious failing as a representation of the logical the former
has a finite domain while the latter conceptually holds any integer value. This problem is
ignored in this work. A clean implementation requires use ofhtantype that is
arbitrary precision, or that at least raises an exception when the implemented domain is
exceeded.

3 Thefloat sortin the logic is assumed to have axioms that reflect the behavior of the C
float type. (This is not practical for thet sort, because true integers are needed in
the logic for induction proofs.)
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glaringly, some specifications are impossible to satisfy. Consider, for example, a
predicate that defines whether a universal Turing machine halts and a specification
that demands a program that both realizes this predicate and terminates on all
inputs. Or consider a specification for a program that must find an unreachable
piece of data. It is to Galois’s credit that the programmer can logically define the
concerned predicates, but will discover during the compilation process that the
desired programs cannot be created. (This is far better than what happens with a
traditional language, which permits the programmer to build a program that
executes, though incorrectly, leading the programmer to work at fixing the
program.)

Within the realm of what is computable, more practical concerns arise.
The programmer can define a predicate that can be realized by a program, but that
is too abstractly defined to permit immediate compilation. In such a case, the
programmer will have to define a logically equivalent predicate that presents the
compiler an easier task. (This is discussed more in Chapter 5.)

As discussed above, the compiler will guarantee that any Galois
program composed from other Galois programs will guarantee the preconditions
of these. This requires the compiler to analyze the preconditions of included
programs relative to the context in which they are used and the precondition of the
program being compiled. The procedural calculus in Chapter 5 shows how this
analysis is done, yieldingmerequisite assertiowhich, if true, validates the
compiled program. The compiler relies on the programmer using theorem proving
tools to verify the prerequisite assertion. (See Figure 1.) Theorem proving is
beyond the scope of this work; we assume that this task is practical. (As
importantly, Galois seems to increase program reliability even when the
programmer verifies the prerequisite assertion by inspection. The prerequisite
assertion makes explicit the assumptions that are made by program execution,
which assumptions are often overlooked in more traditional programming. Patrick
Ray [58] investigates the use of Galois in the absence of a theorem prover.)
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Figure 1 shows the data and control flows between the compiler, the

prerequisite assertion
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generated procedure
program library

Figure 2: Interaction between compiler & theorem prover.

theorem prover, and the various data elements. The process of creating a Galois
program is outlined below. Each step explains part of Figure 1.

(1) The programmer defines a predicate and specifies a desired program. The
predicate definition adds to the set of predicate definitions, and the program
specification is the primary input to the compiler.

(2) The compiler generates a composition for the program and produces the
prerequisite assertion that validates it. If the compiler fails, it displays the failure
points to the programmer so that the programmer can modify the program
specification or predicate definition. (This step is detailed in Chapter 5.)

(3) The prerequisite assertion is verified. The theorem prover may use and update a
theorem library concerning predicates during this step. If the prerequisite
assertion cannot be verified, then the programmer must revise the program
specification (perhaps strengthening the precondition) or the predicate definition
(adding run-time checks).

(4) Once the prerequisite assertion is verified, the compiler generates code in the
target language and adds the procedure to the procedure library.

This process is a more complex route to executable code from logic
than exemplified in Prolog, where any syntactically correct program executes. The
greater preparatory effort required by Galois buys three improvements over
Prolog.CorrectnessThe programmer can select, and the compiler verify, very
strong execution properties. For example, an effective or complete Galois program
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never fails to give a tuple that satisfies its predicate, when one exists. In contrast,
Prolog programs without control constructs are only sound, and with control
constructs they can give wrong answénspressivenesssalois programs can
express and manipulate pointer-based data structtffesency:Galois programs
execute efficiently and are capable of destructively updating pointer-based data
structures.

3.4 The Elements of Galois

At the top level, there are three elements of the programming language:
predicate definitions, sort definitions, and program specifications. Predicate
definitions are made in the logic, as described in Chapter 2. Sort definitions merely
provide a way to attach a name to sort expressions for convenient use. Program
specifications play the role discussed in the previous sections.

These are the only elements of the language. Their description below
includes a BNF grammar. Five non-terminals of this grammar reference syntactic
parts of the logic in Chapter 2sortExpr> IS a sort expressioRridentifier> 15
a sort, predicate, or variable namearg> is an argument declaratioffprmula> IS
a formula, andpliteral> is a positive literal. These non-terminals are not
defined in the BNF grammar below. (All other non-terminals begin with a capital
letter.)

The Predicate Definition

A predicate definition introduces a new predicate name and a recursive
definition for the predicate. It is a formula in the logic with the following form:

<PredDef>:=<PredName> (<PredArgList>) = (<Body>)
<PredArgList>:= |<arg>|<arg>, <PredArgList>
<PredName>:=<identif ier>

<Body>:=<formula>

That is, a predicate definition is a formula of the form
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p(ag...a ,) = ® whereeachargumeatis a variable with a sort declaration as
described in Chapter 2. Thedyof a predicate definition is a formula in the logic,

®, whose free variables are the predicate’s arguments. The body may include uses
of the predicate being defined, To ease parsing, the body must be enclosed in
parentheses. Because a predicate definition is just a formula in the logic, as
described in Chapter 2, its syntax and meaning are not discussed further here.

The Sort Definition

A sort definition is very much like atpedef . It associates a name
with one of the logic’s sorts, so that the name can be used as a sort declaration for
an argument or variable. The format of a sort definition is:

<SortDef>:=sortdef <sortExpr><SortName>;
<SortName> :=<identif ier>

Sort expressions are described in Chapter 2. Two examples of sort
definitions follow.

sortdef struct{Next: addr; X: f loat; Y:float;} Point;
sortdef struct {

addr Head:;

Point Pts{};
} PointList;

The first sort definition above describes a structured sort, nasoned,
that has floating point fieldsandy. The second sort is also a structured sort,
namedpPointList , that contains a set ebint elements and an address (intended
to reference the first point.) As in Chapter 2, a small abuse of notation allows a
syntax that is more like C: the square and curly brackets that specify arrays and
sets can follow a field name or sort name.

The Program Specification

The programmer specifies a program pragram specificationin
addition to the predicate that the program realizes, the programmer must provide a
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name, argument modes, precondition, and execution properties. The syntax for a
program definition is given below.

<ProgSpec>:=
{<Pre>} <ProgName> (<MAList>) {<PredName>} <PropList>.

<ProgName> :=<identif ier>

<PredName> :=<identif ier>

<Pre>:= {<formula>}

<MAList>:= |<ModeAssign>|<ModeAssign>, <MAList>
<ModeAssign> := <Mode> <ArgName>
<Mode>:=in|inx|out

<ArgName> :=<identif ier>

<PropList>:= |<Property>|<Property>, <PropList>
<Property>:=sound | effective | complete | terminates

Before further explanation, an example might be helpful. The program
declaration below says that the program generates all values pthat satisfy

the predicate for a given value of, providing thak satisfies the preconditian
whenfoo is invoked.

{a(¥)}foo (inx, outy) {p} complete.

There are several syntactic rules that apply to program definitions, all of
which are intuitive. The arguments given the program must correspond in name
and place to those for the predicate it realizes. Only arguments that have a structure
or array sort can have the made . The free variables of the precondition must be
a subset of the program’s input arguments.

The same predicate can be used to define several programs. One
program might calculate one set of output arguments, and a second might calculate
a different set of output arguments, while both realize the same logical predicate.
Some predicates are not realized by any program. They serve as preconditions, or
to define other predicates.

The Module and Miscellaneous Syntax

A module is a coherent collection of predicate definitions, sort
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definitions, and program definitions. The scope of a sort definition is its module;
that is, the defined sort name can be used in any predicate definition in the module,
but does not apply outside the module. Program and predicate definitions can use
predicates defined in the module. (Nonetheless, a recursive cycle can only be a
single loop. Predicateis said to belefined in terms of if the body ofp refers to

r, or refers to a predicatethat is defined in terms of The predicate can be

defined in terms of itself, bptcannot be defined in terms of amtyerpredicate

that is defined in terms f)

While not shown in the BNF grammar, Galois permits comments in the
style of C++. It also allows integer constants for the module to be parameterized in
the style of C++. For example, the line below defimesbe20.

intconst N=20;

Modules are entirely independent of one another. Thus, the names in
one module never collide with the names in another module, nor can definitions in
one module refer to predicates or sorts defined in another module. Each module
has its own procedure library and theorem library. This organization and name
scoping is not conducive to programming in the large, but it suffices for the
purposes of this work.

3.5 Examples and Discussion

Typically, some predicates in a module serve only to define a data
structure type. For example, the predicate below defines an ordered point list. This
data structure type is a linked list of points ordered on their x-value. (See part A of
Figure 3.) It uses theointList ~ sort defined in the previous section.

AscPts (Ex: PointList) = (
Ex.Head=NULL 0O Ex.Pts=EMPTY
O ( CFirst: Point)(
First OEx.Pts 0O&First=Ex.Head
O First.Next NULL O ( OScnd: Point)(
Scnd JEx.Pts  0&Scnd=First.Next OScnd.X>First.X

www.manaraa.com



57

)
O AscPts(Ex{ Head = First.Next;

Pts = Pts{»First}}

)

ThePointList ~ sort is a structure that contains a pointerd, together
with a setpts . The elements dfts form a singly linked list, with elements
increasing irx value down the list.

All the elements of &ointList ~ data structure can be reached by
chasing thelext pointers. (See part A of Figure 3.) The following assertion, which
is provable in the logic from the above definition, expresses this fact.

AsCPts (x) O ((z Ox.Pts) 0O RPartOf(z,x))

One carlogically define data structures where it is impossible to reach
all pieces of the data structure. Consider, for example, a linked list with pointers
running backwards. (See part B of Figure 3.) Practically, this is a terrible blunder.
Such a blunder is revealed when the programmer tries to compile a program
involving this data structure. The compiler will be unable to generate code that
does anything useful. If a program is specified that requires accessing unreachable
elements, the compiler will either issue errors, or it will ask the theorem prover or
programmer to verify assertions that are false.

Head
N

Next ——» | Next »| Next NULL

X X X

Y Y Y

A: The AscPts data structure. ascendingX values——
Head\
NULL"| Next |4———-— Next |« Next

X X X
Y Y Y

B: A backward linked list, a very stupid data structure.

Figure 3: Examples of data structures.
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An alternate definition of thescPts data structure type is shown
below. It is more terse than the previous definition. It asserts the following
invariant: (1) if the point set is not empty, there is one point that has &exull
pointer, (2) all elements of the point set are reachable, and (Sgtheointer, if
NotNULL, always points to something with a greateralue. This definition might
be preferred for proving assertions about the data structure type or about programs
that use it. It is provably equivalent to the former definition.

AscPts (Ex: PointList) = (// Alternate def inition
Ex.Head NULL O ( [pt DOEx.Pts)(pt.Next=NULL)
O (Opt OEX.Pts)(
RPartOf(pt, Ex)
0 ptNextNULL O
( Opt2 OEX.Pts)(pt.Next=&pt2 Opt.X<pt2.X)

)

The formula above makes use of a frequent abbreviation. Given a term
t whose sort isexp{} , the formulag Ox:Sexp)(x 0Ot ..) and

(x:Sexp)(x 0Ot ..) are ubiquitous. These are abbreviatedtoot) and
(xOt) .

The next predicate defines a search of an ordered point list. It is the
body of a program that given a lisil( ), a key valueKey), and a default address
(Prev ), returns the addresidre ) of the point furthest down the list whosealue
is less than or equal to the key value, or the default address if all points in the list
haveXx values greater than the key value. (The program definition is given later.)

AscPtsSearch
(InL: PointList, Key:f loat, Prev: addr, Here: addr) < (
InL. Head=NULL O Here=Prev
O (Opt OInL.Pts)(
&pt=InL.Head
O ( Key<pt.X 0O Here=Prev
O AscPtsSearch (InL {Head=pt.Next, Pts{»pt}},
Key, Here, &pt)
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)

The next predicate defines a relationship between (1) an ordered point
list, (2) a new point whose x-value is not in the first list, and (3) an ordered point
list that includes both the points from the first list and the new point. In short, it
defines the input-output relation for the operation that inserts into an ordered list. It
uses the search predicate.

AscPtsiInsert
(InL: PointList, Pt: Point, OutL: PointList) = (
( CNew: Point, Here:addr)(
AscPtsSearch (InL, Pt.X, NULL, Here)
0 Here=NULL
O ( New:Pt{Next=InL.Head}//Insertathead
O OutL:InL{Head=&New, Pts [(Pts{«New}}

)
O (HPtOINL)(// Insert after HPt

Here = &HPt
0 HPt.X Pt.X//Failifkeys are equal
O New::Pt{Next=HPt.Next}// Copy ptrto New
0 OutL:InL{Pts [(Pts{«New; HPt.Next=&New}}

The predicate above has a structure almost identical to a list insert
operation written in C or Pascal. It can be given the following interpretation. “To
insert into an ordered point list, first search for the greatest existing point whose
key value is less than or equal to the new point. If no such point exists, insert the
new point at the head of the list. If the found point equals the new point in key
value, then the insert fails. Otherwise, insert the new point after the found point.”
Even though the program deals with pointer-based data structures and uses pointer
manipulations familiar to a C programmer, and even though the compiler will
generate the expected C code, the predicate definition is a formula in a first-order
logic. Assertions logically derived from the predicate definition will accurately
gualify the output tuples produced by the procedure.
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The following program specifications qualify the desired list search and
insert programs. In both cases, the precondition is merely that the input data
structure is an ordered list of points.

{AscPts (InL)}

doAscPtsSearch (inInL, in Key, in Prev, out Here)
{AscPtsSearch} effective, terminates.

{AscPts (InL)}

doAscPtsInsert (inx InL, in Pt, out OutL)
{AscPtsInsert} effective, terminates.

For the insert program, the mode for the input list specifies that it is
consumed, which is to say, it is destructively updated in producing the output list.
In the predicate definition fayscPtsinsert , note the use of data structure
isomorphism to define the output data structorel() as equivalent to the input
data structurelfL ) with some modifications applied. This technique will be used
throughout the examples. Chapter 6 describes how this is realized as a destructive
update.

The same predicate could be used in a program definition that preserves
the input list, copying it to produce the output list. The two programs would realize
the same logical predicates, but their program specifications would impose
different argument modes.

When the compiler is generating code for a program, and the defining
predicate references other predicates, the compiler searches the procedure library
for previously compiled programs that realize these other predicates. The compiler
searches for a program whose argument modes and execution properties are useful
in generating code for the program on which it is currently working. In particular,
the compiler insures that consumed values are not used after they are consumed.
Thus, the compiler guarantees that data structure allocation, use, and destruction
are properly sequenced. (At the interface between the application and Galois
programs, it remains the programmer’s responsibility to insure that the application
abides by conventions regarding data manipulation. These are described in detail
in Section 5.4.)
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3.6 Pointers, Sets, and Memory
Management

Because a set value in the logic is represented in C by an arbitrary
collection of disjoint C data structures, it is impossible to find an element of a set
unless there is a pointer to it. Pointers into sets are chased by formulae such as the
one below.

(IxOSexp)(&x=pt 0O...)

The variablept is the pointer that is dereferenced, and the elided
portion of the formula makes use of the referenced element.

The astute reader may ask: since there is no explicit structuring of
elements in a set, except for the internal references that are defined by the
programmer, what does it mean — operationally — to add elements to or remove
elements from sets? The answer is that these things describe when memory is
allocated and released.

Normally, when the compiler generates code for an existential formula,
it generates code that (1) allocates space for the existentially quantified variable
and gives it a value, and that then (2) deallocates the memory occupied by the
variable at the end of the existential scope. This second step is omitted if the
existentially quantified variable is added to a set that is part of an output argument.
Consider thescPtsinsert ~ predicate from Section 3.5. The variaBkvis
allocated, assigned a value, and then deallocated unless it is added to the set
InL.Pts and returned in the guise ©fitL . Conversely, a predicate that deleted an
element from the ordered linked list would eject an element from a set, and the
generated code would appropriately deallocate the memory that had been allocated
for it.

In writing programs, the programmer does not have to think about
memory allocation and deallocation. Instead, the task is to define data structure
invariants that have no lost parts or dangling pointers, and to define predicates for
input-output relationships that preserve these invariants. A memory leak occurs
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when a program creates a data structure with lost parts. An erroneous memory
deallocation occurs when a program creates a data structure with a dangling
pointer. In the example for the ordered point list, the programmer would want to
prove, in the logic, the following two assertions.

* AscPts(x) 0O Navigable (x) O~HasDangles (x)
e (AscPts(InL) OAscPtsinsert(InL, Pt, OutL))
0 AscPts(OutL)

If these assertions are true, then the compiler will generate code that
allocates and deallocates memory correctly. The same is true for arbitrarily
complex data structures. If the programmer proves (1) that the data structure is
navigable and has no dangling pointers and (2) that all programs concerned
generate outputs that satisfy the data structure’s invariant, then memory leaks and
dangling pointers are eliminated.

Regardless of whether the programmer does (1) and (2), the compiler
will not generate code that chases dangling pointers. Wherever a pointer is chased,
the compiler generates an assertion that asks the programmer to prove from the
preconditions of the program and “what the program has made true so far” that the
pointer dereference is valid. This assertion is made part of the prerequisite
assertion that must be verified before the compiler produces code for the specified
program. (The notion of “what the program has made true so far” is made concrete
in Section 6.5.)

Failure to allocate and deallocate memory correctly and chasing invalid
pointers are problems that plague C programming. These bugs are subtle, difficult
to track down, and often persist in software throughout its commercial life. Galois
gives these issues a formal expression, so that formal reasoning about them is
supported, and producing programs free of these bugs is reduced to verifying in a
first-order logic a set of assertions that are automatically generated.
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3.7 Restrictions on Use of the Logic for
Programs

As previously mentioned, the compiler will balk at some predicates,
even though they are syntactically correct. Chapter 1 briefly described how
programs whose predicates are expressed too abstractly must have their predicates
written more concretely in order for the compiler to successfully process them.
These limitations in using the logic are discussed below. (Chapter 5 and Chapter 7
provide more detailed explanation.) It is important to keep in mind that not every
predicate is intended to be realized by a program. For example, a predicate that
serves as a data structure invariant is useful in proofs and preconditions, even
though it is never realized by a program.

Syntactic Restrictions

To be realized by a program, a predicate that is recursively defined must
have recursion only at an even negation depth. This is formally defined in
Chapter 4. Roughly, this means that determining whether a tuple satisfies the
predicate cannot depend on determining that some otherfaiigl® satisfy the
predicate.

A second restriction concerns universal quantification. A universally
guantified formula will compile only if it has the forfl.2)(60 @), 0 is realized as
a complete procedure whose output variableszamndg has no output variables.
In short, universal quantification can be used only to iterate over a set of values
that are explicitly generated and to verify a condition on this set.

Context-Sensitive Restrictions

Pointers can be dereferenced only as discussed in the previous section.
Sets must be used, as described there, to specify the addition of pieces to or the
removal of pieces from a data structure instance.
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Primitive data structures( , float , char , andaddr ) can be
manipulated freely in the logic. But more complex data structures can be used only
in certain ways. A complex data structure instance is created in one of two ways.
First, a data structure instance is created and bound to a variable of the concerned
sort that is existentially quantified. This instance is valid within the quantifier’s
scope. Second, an output variable can be defined as an isomorphic copy of a data
structure instance, possibly modified by the data structure functions. The
concerned literal has the foymx{...} , Which can be read/“is an isomorphic
copy ofx, with the following modifications ...”. I is destructively consumed, and
it is no longer needed in the program, then this literal acts to destructively update
and bind the result tp Otherwise, the literal acts to perform a deep copy of
modify the result, and bind the modified instance. to

The compiler cannot generate code that performs a deep copy of
arbitrary data structures. In general, if this is needed, the programmer must specify
a program that effectively realizes a predicatg)) , withx as an input variable
andy as an output variable, for allin the concerned data structure class, such that
r(x,y) O x:y is atheorem of the logic. Such a program is callecly
constructor In essence, it tells the compiler how to capyA copy constructor is
also needed to deallocate a data structure instance, for example, when a data
structure instance is consumed by a program that does not recycle the consumed
instance in producing an output instance. (Deallocation can be viewed as copying
to the null device, which is why a copy constructor enables deallocation.) Memory
allocation and deallocation are discussed in more detail in Chapter 7.

A final restriction concerns input argument consumption. Programs that
potentially generate multiple output tuples, i.e., complete procedures that are not
functions, may not have consumed input arguments. The intuition behind this is
that the entire input tuple must survive until the last result tuple is produced.

www.manaraa.com



4. Relational Models of Logic

This chapter presents a declarative semantic for the logic, i.e., an
intended model. The first two sections reprise the relational algebra and show how
it can provide a semantic interpretation of the predicate calculus. This is old hat,
and the purpose is solely to prepare the way for what follows. The third section
shows how a logic and its model can be extended in a natural and minimal fashion
given recursive predicate definitions that satisfy certain syntactic constraints. The
expressive power of recursive predicate definitions are related to Horn clause
programs.

4.1 Review of Relational Algebra

This section reviews the relational algelottaacquaint the reader with
the notation that will be used here. The relational algebra builds on a collection of
domainsy, 1, 2, ..., each of which has a denumerable seb@fes and a seV of
variables Each variable x is assigned to a domain (x). The variables assigned to a
domain; are denoted(j). (Variables are more commonly called attribute names or
column labels, but since they will correspond to variable symbols in the logic, the
former terminology is more convenient here.)

An assignmenis an ordered pair whose first member is a variable and
whose second member is a value from its domain. An assignment with variable x
and value v is written x v or v/x. (This latter notation is read “v replaces x.”) Two
assignments amdisjointif they have different variables. A finite set of pairwise
disjoint assignments is called a tuple, and can be writtgxdy..vn/Xn} or
{X0-Vo0,...Xn - Vn}. The values y,...vh need not be distinct.

Therelational signaturer(t) of a tuple tis the set of variables to which

1 The relational algebra is described in many standard database texts, such as [30].
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it assigns values.Thus, the relational signature @iy...va/Xn} is {X 0,...Xn}-
Two tuples are disjoint if their relational signatures are disjoint as sets. The
maximal relationMy for a signature is the set of all tuples that have the
signaturet.

A relationR is a signaturg(R) and a set of tuples all of which have the
signaturex(R). In a slight abuse of notation, the same symbol is used for both the
relation and its set of tuples. (A relation cannot be defined as a set of tuples with
the same signature, since then the empty relation would have no signature. It will
be important that each signature has its own empty relation.) In database theory,
relations are sometimes required to be finite, but this restriction does not serve the
purpose of interpreting logic, and so it is not assumed in this work.

Column projection and subtraction are basic operations that apply to
both tuples and relations. One can view them as essentially tuple operations that
extend to relations by application to each member tuple (and by application to the
relation’s signature), or as essentially relational operations that apply to tuples
when these are viewed as relations with one member. They are defined below for
tuples, and their extension to relations is assumed.

T (t) Tuple projection. Let ¢ be a relational signaturg,(t) is the subset

of t such that(m-(t))=C n1(t), i.e., the assignments in t to those of its
variables that are in C.

t\D Column subtraction. D is a signature. t\Drgy)_py(t).

This expositions will use several other operations of the relational
algebra. These are defined below.

st Tuple concatenation.If s and t are disjoint tuples, s-t assigns to x the

value a iff a/xd s or a/x(] t. Note that columns are labeled rather
than ordered, so concatenation is commutative: s-t=t-s.

oi(R) Relational selection.This selects all tuples of R whose values equal
i in their common variablesy(R) = {t | R U1t () =T )i }.

R Q Natural join. R} Q ={t| ()(C)(3)(t=q-r-s<1r-dIROq-49Q 0
disjoint(t(r),t(q)) ) }. Note that the natural join is the cross product
when R and Q share no variables.

R/Q Relational divide.R/Q = {t| Qu)(udQUO t-uOR) }.
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R+Q Relational union. If T1(R)=t(Q), then R+Q=RIQ.

R-Q Relational difference.R—Q={t | R O (Ou)(udQ O
T (R)(U)TR(Q)(1)) }. Note that this definition allows R and Q to have
different signatures, and it removes from R all tuples that are equal to
any tuple in Q modulo their common columns.

~R Relational complementM¢(Rr)-R.

The above description of the relational algebra leaves open the content
of the domains. A particular relational algebra fixes these objects.

4.2 Relational Interpretation of Logic

The next task is the definition of an interpretation for sorted, first-order
logic using the relational algebra. An interpretation of a logic L is a relational
algebraA and a denotation functidd that maps the syntactic elements of the logic
into the relational algebra. As is common, the application of the denotation
function to a formula or termin the logic is writteny{], rather tharD(x). An
interpretation of a sorted logic assigns to eachssorthe logic a domairs), to
each constanta value §] in the domain of its sort, and to each function synibol
with signaturesg,..s, — s; a function{] from §y) x...x 6,)to §;). This
exposition departs from the usual trail at this point, and does something a little
different for predicates and formulae.

First, variable symbols in the logic are identified with variables in the
relational algebra; that is, to serve as an interpretation, a relational algebra must
have the same variables as the logic, and each variable’s sort (in the logic) must be
assigned to the variable’s domain (in the algebra). This gives rise to a natural
interpretation of terms in the logic. Given a tgtm,,..x ) wherexg,..x, are
variables, the interpretation of this term is a function §,..x )] on tuples
whose signatures contad{xo,..xn}. For a tuple t withmy(t)={x/vo,..xn/Vn},
define f(x ¢...x ) 1(0)=[f1(vo,...Vn). This definition is recursively applied to a
general termie 4,..e ), Wheree,,..e, are subterms, byt¢ o..e ,)](t) =
[f1([eo](t),...[en](1)). Thus, given any termin the logic with variables \é(, its
interpretation is a functioffom any tuple that assigns values to the variable$ V(
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to a value in the domain efs sort.

Each atomic formula(e ,...e ) of the logic is assigned to a relation
[p(e o....e )] whose relational signature comprises the free variables of
p(e g,..e ), thatist([pe ... n))D)=V(p(e o,..6 ,)). Relations assigned to
different atomic formulae with the same predicate symbol must be equivalent
modulo the calculation of values for their arguments. This is formally expressed by
the constraint below. This requirement uniquely determines the relation assigned
to an atomic formulae ,...e ) given (1) the relation assignedp@ o,..e )
wheree,...e |, are variables, and (2) the denotations for terms.

Consistency of relations assigned to atomic formulae:

Given that botlp(e g,...e ) andp(x q,...x ) are well-formed formulae,
thentd[p(e g..e  n)] = {([e]®)Xo.--.(len]®NXn} O[P(X gX ) ].

An interpretation as defined above assigns semantic structures to
variables and formulae. The usual notion instead assigns semantic structures to
predicate symbols. (Both notions identically treat constants, functions, and terms.)
The table below summarizes what has been done so far.

the logical element ... is assigneddyo the element &k ...

S a sort £), adomain

X a variable symbol x, a variable (column label)

f a function symbol f[], function on appropriate domains

e aterm E], a function on tuples whose relational signature

includes the variables of e
p(..) an atomic formula g(..) ], arelation whose signature isp((.) )

The final step assigns a relation to every well-formed formula in the
logic. The boolean constant False is assigned the empty relation with an empty
signhature, writter. The boolean constant True is assigned the relation with an
empty signature that contains one (empty) tuple, writtefhe important
properties of these relations from the algebraic viewpoint istieaa zero and
an identity of the relational join; that is, for any relatiorFRR={}= F and
TxR=R. The relations assigned to arbitrary formulae are calculated from those
assigned to atomic formulae according to the rules below.

www.manaraa.com



69

Calculate ... by ... with signature ...
[False ]= F {}

[ True 1= T {3

[0h]= ~[¢] V(9)

[¢0&]= [¢] > [€] V() O V()
[((Ox)¢]= [9]/3(x) V(9) —{x}
[(D)¢]= [91\ {x} V() -{x}

It is trivially verified that the rules for the two quantifiers satisfy the
equality [@X)(¢)] = [-(Ox)~¢(X)], and that conjunction and negation under
guantification behave as expected. The other logical particigles-(, andl])) are
handled by rewriting them in terms of conjunction and negation. A tuple tis said to
satisfya formulap under an interpretation precisely when tis in the relation the
interpretation assigns to

4.3 Models and Least Fixed-Point
Extensions to the Logic

As usual, a closed formulatisie in an interpretation if it is assigned
the valu€er, and an interpretation \&lid for the logic or anodelof the logic if all
theorems in the logic are true in the interpretation. This narrative now assumes that
there is an interpretation of the logic that serves as its intended model. This section
shows how a new predicate can be added to the logic, together with a recursive
axiom that defines it, in a fashion that gives rise to a unique and minimal extension
of the model. Any number of new predicates can be thus added to the logic, one at
a time. This definitional method is common in logic, but has not been widely
applied in logic programming.

A formulaep with free variables,,.. xq of sortss,,...so and perhaps
involving a new predicate symbplwhose signature is),...so can be assigned a
relation according to the above rulgssena prior assignment of some relation P
top. The relation thus assignedag is denoted¢p](P). The set of relations with
relational signaturex,,.. xq} are partially ordered by set containment, and they
form a complete lattice under this orderingp] acts as an operator on this lattice.
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(For any relation P in this latticepf](P) is another relation in the lattice.) A
lattice operator is continuous precisely when it is monotonic [31]. Thusy]if$
monotonic, it then has a least fixed-point, and that least fixed-point, written
[®p]t w, is the least upper bound of all finite applicationsmwf ffo the empty
relation. When this least fixed-point is taken as the interpretatiptioén the
model so extended is a model of the logic when the predicate syntadided
along with the defining axiom(x o...x ) = ®p. This least fixed-pointis
algebraically expressed by the below recursion.

[Pp]10=[Pp] ({})
[®p]1i+1 = [Pp] ([Pp]ti)
[(Dp] tw= Uj<w [CDp]T i

The question remains: when igj] monotonic? We now give a
characterization of monotonicity in terms of hpvs used inpp. A negation
operator (~pappliesto a predicate instance if it directly precedes the predicate
instance or it directly precedes a formula that contains the predicate instance. The
negation deptlof an instance of the predicatén ®p, is the number of negation
operators that apply to it, taking universal quantification, conjunction, and
negation as the primitive logical participl%m this algebraic framework, it is
easy to prove the following necessary, but not sufficient, characterization of
monotonicity.

Thm.1 (Monotonicity of positively recursive predicates.)The lattice
operator fp] is monotonic if every instance pfin ®, has an even negation
depth.

Proof From the fact that relational join, division by the domain of a
variable, and projection preserve increasing and decreasing monotonicity,
it follows that if [pp] and [p] are both increasing (or decreasing)
monotonic, then so are LK p], [(Cx) ¢pl, and [(X) ¢p]. Relational

Negation counting is the same if disjuncti@p,is included. If material implicatiort) ,

is included, the antecedent picks up an additional negation depth, e.g., the negation depth
of p in pd q is 1. Using these rules, negation depth is invariant under the usual axioms

for the predicate calculus.
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complement turns an increasing monotonic operator into a decreasing
monotonic operator, and vice versa, i.eq s increasing monotonic iff

[$p] is decreasing monotonic. The identity operator is increasing
monotonic. Since®p] is built from the identity operator using

conjunction, quantification, and negations of even depth, the result follows.

Cor.2 If p occurs at even negation depthfip, then the intended

model for the base logic extended with the assignmermgift[w to the
predicate symbal is a model of the base logic extended by the predicate
symbolp and the defining axiom(x ¢,..x ) < ®p.

Every stratified Horn clause progrdhtan be automatically converted
into a sequence of recursive predicate definitions of the fppm,..xn) = ®p. ,
where®, refers only to predicates with j i, and wherg; occurs at zero
negation depth withit,, . The order of definition of the predicatgs ...pnis the
same as their stratificationh The formula®y, is just the (universally
guantified) disjunction whose clauses are the bodies of the claudasiose head
is pj. This proves the following theorem.

Thm.3 (Expressive power of stratified Horn clause programs.)
Recursive predicate definitions with even negation depth of recursion have
as much expressive power as stratified Horn clause programs.

The predicate calculus permits the explicit use of quantifiers,
disjunction, and negation, and recursive predicate definition does not restrict
recursion to zero depth. Thus, recursive predicate definition is notationally richer
than stratified Horn clause programs.

Another important quality of the extended model is that it preserves
initiality. In the terms of Goguen [9], it introduces neither junk nor confusion.

Thm. 4 (Preservation of initiality.) If the intended model of the base
logic is an initial model, then the extended model is an initial model.

Proof The extended model does not add to the interpretation of terms,
and so if the original model lacks values that are not assigned to terms in
the logic, then the extended model also lacks unused terms. (No junk is
introduced.) The relatiord#jp] 1 0 includes, by definition, only those tuples
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that can be proven to satisfy p given no assumptions about any other tuples
satisfyingp, and assuming that one can prove what tuples satisfy other
predicates. Each]p] t (i+1) contains only those tuples that can be proven

to satisfyp given the tuples that are ip] ti. By induction, a tuple

satisfies p only if one can prove that it satisfies p. (No confusion is added.)

4.4  Extensions to The Intended Model

Chapter 2 describes an intended model for the base logic. This model
assigns domains to each of the sorts, and relations over those domains to each of
the predicates. This model can be extended to general formulae as described in
Section 4.2.

The intended model is extended as described in the previous section for
any sequence of recursively defined predicates, providing all recursion occurs at
even negation depth. As usual, the relation assigned to a preglisateitten p],
and is called the denotationmf

4.5 The Semantic Map

Given a formulap, its denotation in the intended model is a relatign [
whose columns are the free variableg$ o¥(¢). Given an input signatureand a
result signatur®, whererQ=V(¢), amapis the triple ¢, 1, Q). Define the
semantic major (¢, 7, Q) to be the function( ; o): ' - 2%, where:

fo, 1, Q) () =T (0 ([9])

This function is often abbreviateg fvhen the signatures are implied
by the context, or even just f when the entire map is implicit. For dagle i and
anyQ-tuple q, @Jf (i) iff i and g are equal on their common variables, and i-q is in
[¢#]. Maps are used in the coming chapters to discuss the semantics of procedures.
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5. Program Specification &
Compilation

The notions of a program specification, a procedure, a procedure’s
semantic description, and whether a procedure satisfies a program specification are
made formal in the first sections of this chapter. The chapter then proceeds with an
exposition of therocedural calculuswhich gives a set of operators for
composing procedures and a set of rules for calculating the composed procedure’s
semantic description. After this, a compilation algorithm is given that produces a
procedure composition that satisfies a given program specification. This chapter
closes with a careful statement of the conventions an application program must
follow in using Galois programs.

In way of preview, grocedureis a unit of computation that operates on
a set of variables in a deterministic fashion. $amantic descriptioof a
procedure is (1) a set of modes describing its use of variables, (2) a precondition,
(3) a postcondition, and (4) execution properties describing its behavior relative to
the precondition and postcondition. Both the precondition and postcondition are
formulae in the logic. These notions are formalized below.

A programis a procedure whose semantic description matches a
program specification. In the code production described in Chapter 7, procedures
are implemented as fragments of C code. Code fragments that realize simple
formulae are composed to realize more complex formulae. A fragment that
realizes a program specification is wrapped in a function definition, and the
resulting C function is the program demanded by the program specification. The
procedural calculus provides the mechanism for finding a procedure composition
that realizes a specified program. (See Figure 1.)

73
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satisfiesP? ¢« The goal is a composition
g that realizes the program
specificatiorP.

Procedure operators —
0, 0, /4, etc. — are used to

compose procedures\
Begin with stock procedures that

Semantic description of

realize the logic’s primitive st «—— composed procedure is
predicates, and a library of VAN calculated from the semantic
previously compiled programs.—_p ¢ t 4+— descriptions of its components

Figure 1: Procedure composition.

Throughout this work, characters in a Gothic typeface, e.g. s, are used
to denote procedures. A program specification is denoted by a bold, italicized
capital, such aB.

5.1 Procedural Semantics

The definition below formalizes the notion of a procedure.

Def. 2 A procedurewith inputs fromr and results i@ is a functiors: 1

- ({0, ..s()]} - QU{}) that maps anynput tuplei O rinto a sequenéeof
result tuples(i)=<qq, q;,..->. Every element of(i) except perhaps the last is
a tuple inQ. s(i) may be finite or infinite. If finite, it may terminate with the
end-of-stream value

Though mathematically defined above, a procedure captures the
behavior of a computer program. A procedure accepts an input tuple and generates
a sequence of tuples on request. The value is the prosesigral that it has
returned the last available results(f) is infinite, the procedure continues
generating output values as long as they are requesti).i$ffinite but does not
endin , the procedure enters an infinite loop after producing the last output value. s
is said tosucceedn input tuple i if s(i) contains a result tuple other than ;
otherwise, it is said ttail.

LA sequence x over the sgtis a function from an initial segment of the natural numbers
into 4. The domain of x is {k: 0 k<[x[}, where |x| is an ordinal calledethgthof x, |x|o.
The j-th element of x is written; xIf s is a sequence-valued function, the j-th element of

s(i) is written (s(i)).
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Theexecution propertiesf a procedure s with signaturesindq relate
its behavior to a formuld that it is intended to realize, or describe when it
terminates. The free variablesgpfmust equal the union afandQ. Recall from
Section 4.5 that f is the function that maps a+typle i to the set of) -tuples each
of which together with i satisfigs f is used in the definition of execution
properties, below.

Def. 3  Lets be s aprocedure with input signatund result signature
Q, and let9 and¢ be formulae called the precondition and postcondition,
where V@)r and V@)=10 Q. Given that i ranges over all tuples
satisfying, s, relative t® andd:

issound if gOfp(i) for every q (i),

terminates if s(i) ends in ,

is effective if it is sound, terminates, ari) contains precisely one
output tuple g whép(i) {},

iscomplete if it is sound, and for everylfp(i) there is a dJs(i) that is
isomorphicto q (i.e., g::q"),

is afunction if it is effective, complete, and terminates, and

is atotal function if it is a function and |s(i)|=1.

Note that a procedure can be both effective and complete only if, for each
input tuple, the output tuple is unique up to data structure isomorphism.
This is the reason such a procedure is labeled a function.

A semantic descriptionharacterizes the set of procedures with
common input and result signatures that realize a formula over a given
precondition, displaying similar execution behavior.

Def. 4 A semantic descriptiors (1) an input signature, (2) a result
signature, (3) a preconditio®, where V@)1, (4) a postcondition,
where V)=10 Q, and (5) a set of semantic properties that always
includessound

Def.5 A proceduresatisfiesa semantic description if it has the stated
input and result signatures as the semantic description, and the stated
execution properties hold for the procedure relative to the stated
precondition and postcondition.
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Procedures that satisfy a common semantic description may differ in
several ways. Effective procedures that are not functions may return different
output tuples for the same input tuple. Complete procedures may present output
tuples in different order, and unless termination is specified, some procedures may
terminate and others not on the same input tuple. When termination is not
specified, some effective procedures may terminate or loop endlessly for input
tuples for which there is no output tuple. Note that if a complete procedure
terminates, then for each input tuple, the set of output tuples is finite.

A program specificatioms a semantic description, augmented with a
program name, where the postcondition is simply a named predicate. A
programmer specifies a program that is either effective or complete, but not both.
The former is the case when the programmer deamgqualified output tuple, if
it exists, and the latter whel qualified output tuples are desired. A program that
produces a data structure is usually effective, e.g., it produlceap a B-tree, ora
hash table that satisfies the program specification, whenever one exists.

An effective procedure is shown to be a function by proving that it has a
unigue output tuple for each input tuple. A procedure that has no output variables
is necessarily a function. It is calledl@aracteristic functiobecause it serves to
determine whether an input tuple belongs to a qualified set, i.e., whether an input
tuple satisfies some condition which the function is saitdy.

Most of the examples in this work show programs that effectively
realize their specifications. In order to compose an effective realization of a
predicate, it is often necessary to have complete realizations of component
predicates. For example, to iterate through an array firahiegement that
satisfies some criterion, there must be a procedure that geraratethe possible
index values for the array.

While the above notions are straight-forward, a few examples will serve
to make them concrete.

Ex. 6 Let c be the procedure with input signature {x, y} and result
signature {x, y} such that:
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c({a/x, bly}) = <{alx, bly}, >, if x<yand
c({a/x, bly}) = <>, otherwise.

Notice that there are no output variables. c is complete for the predicate
x<y. It terminates, and it is a function, though not a total function. Or to put
it another way, it is a characteristic function that verifies the condition x<y.

Ex. 7 Let i be the procedure with input signature {} and result
signature {x} that generates the sequence of all prime numbers:

i) = < {2/x}, {3/x}, {5/x}, ...>.

This procedure is complete for the prediqatee(x) . It does not
terminate.

Ex. 8 Let w be the procedure with input signature {x} and result
signature {x, y} that returns in integer y the sum x+2:

w({a/x}) = <{alx, a+2ly}, >.

This procedure is both effective and complete for the predicate y=x+2. It is
a total function.

The last two procedures will be used in the following section to
demonstrate procedural composition. More examples will be developed in the
coming section.

5.2 Composing Procedures

The central idea of the procedural calculus is that procedures that
realize the component formulae of a larger formula can be composed into a larger
procedure that realizes the larger formula. The procedural calculus comprises a
few procedure operators and a set of rules that calculate the semantic description
of procedures composed with these operators. Each rule concerns one logical
construction and describes how to calculate the semantic description of the
composed procedure from the semantic properties of the semantic description of
the component formulae. The presentation below is organized according to the
various logical constructions. First the rules for disjunction are presented,
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followed by the rules for conjunction, the other boolean operators, existential
guantification, universal quantification, and finally, recursion.

Readers may benefit by reading this section in parallel with Section 7.2,
which presents the C code corresponding to the below compositions. This section
formally defines what the code there must achieve, and the code there makes
concrete the more abstract presentation below.

Disjunction

To producean output tuple that satisfigg kp, a procedure can first try to
find a tuple that satisfiggsand, if that fails, try to find a tuple that satisfpef
there are effective procedures that reafizndg separately, and the procedure
that realize® terminates, then these are easily composed in this fashion. This
procedure operation is calletioice

Def.9  Choice.The procedures s and t must have the same input and
result signatures. Definéls by:

(sOt)(i) = t(i), if s(i) = <>, and
(sOOt)(i) = s(i), otherwise.

For example, let g and z be procedures with input signature {x} and
output signature {x, y}, where:

q({i/x}) = <{ilx, jly}, >,ifj %=i,
g({i/x}) =< >, ifiis not a square, and
z({i/x}) = <{ilx, Oly}, >.

Then dJz returns the square-root of x if X is a square and returns zero
otherwise. It provides an effective realization o%:(y Oy=0).

To produceall tuples that satisf¢g[lp, a procedure can first produce all
tuples that satisfg, and then, assuming that the former are finite in number, the
procedure can produce all the tuples that sapdfythere arecompletegprocedures
that realizep and@ separately, and if the procedure that realizésrminates, then
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these can be composed to provide a complete realizatigpng@through procedure
concatenation

Def. 10 ConcatenationThe procedures s and t must have the same input
and result signatures. Defingtsby:

(sO0)() = <(s(@)o. --- (S, (D))o, ()1, -..>, if (S()h+1= , and
(stt)(i) = s(i), otherwise.

This formalizes the notion of “producing all of s and, when that completes,
producing all of t.” Note thatst terminates precisely when s and t both
terminate. Given a sequencg.sSy, the usual notation is used for repeated

SUMS2 1 k sk = S1US ... S

Note that neither choice nor concatenation are commutative, i.e., itis
generally the caseeitherthat $1t=t0s, nor that $1t=tJs. This is reflected in the
calculation of semantic properties for the composed procedures in the lemma
below.

Lm. 11 Ifsandtare procedures with the same input and result
signatures, s realizgsunder precondition, and t realizeg under
precondition3, then §1t and §1t realize$ O @, SOt under the precondition
o O(~¢ O B) and $1t under the preconditiom [13. The execution
properties of gt and $1t with respect t@ [J @ are determined from the
execution properties of s with respecttand t with respect tg, according
to the table below.

the composition ... igis ... and is ...
st is effective effective & terminating| effective

st terminates terminating terminating
st is complete complete & terminating complete
st terminates terminating terminating

Proof Concatenation requires the preconditionl (3 because both s
and t are applied to the input tuple. Choice only requires the weaker
preconditiora O (~¢ O B), because tis applied to the input tuple only if s
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fails, i.e., ifpdoes not hold. The rules in the table summarize the comments
above about the behavior of these compositions. Note that in the first and
third columns, s must terminate to guarantee the effectiveness and
completeness of the compositions, because s is applied first, and in order
for t to be applied, s must terminate.

Conjunction

The procedural operation that realizes conjunctiGeguential
composition |t realizes the conjunctioplo by first producing a result tuple that
satisfiesh and, using this, producing a result tuple that satigfiés The
component procedures must coordinate their use of variables: they must not have
common output variables, and the input variables for the second procedure must
either be input variables to the composed procedure, or must have been output by
the first procedure. The definition of sequential composition first requires the
definition of an operation that augments a procedure with new variables that are
“passed through” unchanged.

Def. 12 Signature augmentatiohet s be a procedure with input
signaturer and result signatur@ = {x, ...z}, and leta ={u,...w} be any
signature disjoint fronr@—1. Let i be a tuple over, and j a tuple ovef
such that i and j are equal on their common variables (if any). Then:

(s™)(i-]) = s(i)-].
In other words, s2 adds the variables im to the input and result
variables of s, by passing values for them through unmodified. The operation is
defined broadly, so that may include variables that are already input variables to

S. Sequential composition is now defined using the operations of signature
augmentation and procedure concatenation, previously defined.

Def. 13 Sequential compositiohet s be a procedure with input
signaturer and result signatur@, t a procedure with input signatureand
result signature&, and assume that their output signatures are disjoint, i.e.,
that ®R—1)n(Q—7)={}. Let 2 = 100(y—Q) and3 = R1Q. The composition
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t (s) with input signaturet and result signaturg is defined at each
4-tuple, a, by:

(t(s))(@) =2 k<sf*(QHT) (™ (a) k-

Operationally, this says: apply s to theart of a; augment this
sequence with the nonpart of a; apply t to each elementfga)), of the
resulting sequence; augment the result with the npart of (s(a)); and finally,
concatenate these sequences. More simply, it says: feed a tuple to s, feed the first
resulting tuple to t, let t produce its output sequence, then go back for the next
tuple from s, where all variables not used by s or t are passed through them
unchanged.

For example, consider the procedure i that completely realizes
prime(x) and the procedure w that realizes the funcgten2 . (Both were
described in the previous section). The composed procedure w(i) pairs each prime
with the number that is two greater:

(w()){}) = <{2/x, 4ly}, {3/%, 5Iy}, {5/%, 7ly}, ...>

Thus, w(i) is a complete realization of the formuyd@ne(x) 0O y=x+2.
Let j be the characteristic function that verifies that y is prime:

i{aly}) = <{a/x}, >, ifais prime, and
j({aly}) = < >, otherwise.

Then j(w(i)) produces all pairs of primes whose difference is two:
Jw(){}) = <{3/x, 5ly}, {5/x, 7ly}, {11/x, 13/y}, ... >

In other words, j(w(i)) is a procedure that is a complete realization the
formula:prime(x) O y=x+2 Oprime(y) . Note thatiis @ompleterealization of
the predicaterime(x) while jis acharacteristic functioror the predicate
prime(y) . The lemma below summarizes the properties of sequential composition.

Lm. 14 If srealizesh under precondition, and t realizeg under
precondition3, then if t(s) can be formed, it realizg¢$] @ under the
preconditiora (¢ O B), and the execution properties of t(s) with respect
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to ¢ Ogare determined from the execution properties of s with respéct to
and t with respect t, according to the table below.

t(s)is ... ifsis ... and is ...
effective complete effective
effective a total function
complete complete complete &
terminates
a function complete
terminates terminates terminates
a function a function a function
a total function a total function a total function

Proof

Each tuple produced by t(s) derives from the application of s,

first, to the input tuple, and then of t to one of the result tuples from the
prior application of s. Because of this order of applicatoonl,(¢ [I ) is
the weakest precondition that guarantees that (iglds prior to the
application of s, and (2) for a result tuple of s (together with other input

variables to t(s))B holds.

The rules in the table are fairly simple. In the first two columns, the
conditions trivially guarantee that t(s) produce a result tuple whenever one
exists. For completeness, in the first case, it is necessary that t terminates,
since otherwise t(s) does not produce tuples after the first result instance of
s where t fails to terminate. The last two rules follow from the fact that
sequential composition generalizes function composition.

Existential Quantification and “True”

A projection procedurevith input signature and result signature
Q[ I is the total function that merely passes through its result arguments. When
I=Q, a projection procedure is calledidentity procedure

Projection procedures realize existential quantification. Or to frame this
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more broadly, existential quantification is only realized constructively. From the
programmer’s viewpoint, an existentially quantified variable serves to hold an
intermediate value that is produced by but not returned from a computation. After
the quantified variable is used, a projection function applied through sequential
composition removes it, i.e., “projects it off.” (Chapter 7 shows how projection
procedures are implemented as memory deallocation.) These remarks are
formalized in the lemma below.

Lm. 15 If s with result signature realizesh under preconditioa, and
p is a projection o) ontoQ—%, then p(s) realizesE)¢$ under
preconditiona. p(s) is effective, is complete, and terminates precisely
when s is effective, is complete and terminates.

Projection procedures can be viewed as realizing the boolean constant
True . (UE)$ can be viewed aslITrue , where the procedure that realizes: fails
to pass on the quantified variables.

The Other Boolean Operators

Given realizations of conjunction, disjunction, amak , a realization
of negation would provide a complete set of boolean operations. This motivates
the following definition.

Def. 16 Procedure Complemen&iven any procedure s with input
signaturer and result signatur@, the procedure !s is defined at each
I-tuplei by:

Is(i) = < > if s(i) = <q, ...> for some-tuple q,
Is(i) =<i, >ifs(i)=<>,and
Is(i) = <>, otherwise.

In short, when s succeeds !s fails, and when s fails and terminates !s
succeeds. The procedural complement realizes negation, but it will have a different
result signature from s if s has any output variables. This is made rigorous in the
lemma below.
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Lm. 17 If s with input signaturg and result signature realizesp

under precondition, then !s with input and result signatureealizes

~(0o)¢ under precondition, whereo=Q-I is the output signature of s. !s

is a function, and it terminates if s never produces the null sequence, i.e.,
never enters an infinite loop before producing any output. (This is a slightly
weaker condition than saying tteterminates, since it permits infinite
seqguences.)

Negation can be used directly, but more often, it is implicit in the if-
then-else construad,[] @16. The construch ] @16 is logically equivalent to
(6 Op)(~$[0), and it is realized through this rewrite. As pointed out above,
procedural complement realizes the negation of a formula— without existential
guantification — only when the complemented procedure verifies some condition.
Because of this, the realizationdofl ¢J6 requires a procedure s that is a
characteristic function fap, i.e., wherer=V(¢). This is congruent with the
intended purpose dfl] @10, to provide the programmer a construct that
corresponds to thavitch statement of C.

Universal Quantification

Universal quantification provides the programmer a way to verify a
condition over some set. The only form of universal quantification that can be
realized is(02)¢ 0 @, whered generates values in some set, @werifies the
condition. This formula is realized through the procedural composition defined
below.

Def. 18 Procedure DivisionGiven any terminating procedure s with
input signaturg and result signatur@, a characteristic function t on
signature7] Q, and a signaturg J 7, the procedure gf has input
signaturel and result signatur@—2 and, for eacli-tuple i, (sf;t)(i) is the
Q-4 projection of the subsequence of s(i) where:

T2 (@QU(s/a1)(1) < qus(i) T (En)((rds(i) U1y (N=1t4(q)) O rOt(r))

Consider the set of tuples in the sequence s(i) that contamthple, a,
and the set of tuples in the sequence t(i) that also contain the sub-tuple, a. If
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these two sets are not equal, remove from s(i) the first set. Continue to pare
s(i) by removing such sets for a@ttuples. The result is (gt)(i).

For example, let s be the complete procedure with input signature
{b, x} and result signature {b, x, k} that realizes the formula 0 k<b. (The variable x
is an integer array that is passed through unchanged by s.) Let t be the procedure
with input and result signature {b, x, k} that verifies x[k]>0. Thep d/is the
procedure with input and result signature {b, x} where:

sl t{bo/b, xo/x}) = <{bo/b, Xg/x}, >, if x[k]>0 for O k<lp, and
sl t({bo/b, Xp/X}) = < >, otherwise.

In other words, g t realizes the formulel{k)(0 k<bl] x[k]>0). Note
the similarity between procedure division and relational division. The former is
used to procedurally realize universal quantification, while the latter is used to
define the declarative semantics of universal quantification. To realzpp( o,
s must completely realizig since otherwise some values may not be verified by t.
The lemma below adds to the previous discussion a rule for calculating
preconditions.

Lm. 19 If s with input signaturg and result signatur@ is a complete
realization ofp under the preconditiom, t verifiesp with signaturer [ Q
under preconditiofs, and4 is a signature that is a subseRgfthen sjtis
a complete and terminating realization Bfa)$¢ 0 ¢, under the
preconditiona (¢ B).

Proof The semantic realization of g/is discussed above. As to the
precondition, ¢ B) is sufficient, rather tha, because every tuple given
to tis generated by s, and hence satigfies

Literals and Argument Binding

So far in the discussion of the procedural calculus, the formal and actual
arguments to predicates have been assumed identical. That is, there has been no
description of how to realiz&f(x), y) , for example, given a realization of
p(u, v) . Variable binding turns a procedure for a predicate into a procedure for a
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positive literal built on the predicate. This is formalized in the definition below.

Def. 20 Variable bindingLetl be a positive literal formed from the
literal p(xy,...%,), i.e.,l is p(k,...t;), where §,...t; are terms. Let s be a
procedure that realizes p, where:

Xp,-..Xg are the pure input variables (modénis
Xe,..-Xg @re the consumed input variables (modex,
Xp,-..% are the output variables (modeoisf), and
Yo.---Ym are the variables in the terms. Lt y.

If the terms &,...4, t,,...4 (which correspond to the consumed input
variables and output variables of s) are simple variables, then define the
procedure lswith input signaturg={y g,...ym,te,-.-lg}, consumed input
signatureD={tg,...tg}, and output signature ={t,...{}, on an input tuple

i={W /Yo, ..-Wm/Ym, Velte..--Vgltg}, as follows. Let y,...vy be the values of
terms t,...tg applied to the input tuple i. If the k-th result of s on i (as passed
through the binding) is:

{V /Xty V! Xdls Vi/Xhs---VifXj} = S{V o/ X -V Xdls Vel Xer---Vg/Xgh),
then the k-th result of ss:
(i) = (W o/You..-Win/Yrm, Vi/th ... vi/t}.

The important condition in the above definition is that the terms bound
to the consumed input arguments and the output arguments must be simple
variables. Obviously, the procedu#ehas the same semantic properties as s. This
is formally stated below.

Lm. 21 The procedure'$s sound, effective, complete, and terminates
when s is sound, effective, complete, and terminates, respectively.

Chapter 7 deals with generating code for terms. Some terms give rise to
preconditions, thud snay have preconditions that s does not. This is discussed in
that chapter.
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Recursion

Only effective realization is supported for recursively defined
predicates. (Obviously, if a recursively defined predicate can be proved a function,
then its effective realization is also complete.) Rée a program specification
with postcondition predicatg which has the recursive definitipr- ®,. Let Esbe
a composition of sequence-valued functions that reafigessich that (1) s is the
procedure symbol assignedpin Eg, (2) s is assumed to be effective fior
(3) given this assumption ks an effective realization @, and (4) s and fhave
the same input and result signatures. Given this, a least fixed-point can be defined
for s so that it is indeed an effective realizatiop.of

Let g be the unique procedure with same signature as s that has <> as
its output for any input tuple, i.e g & the procedure that enters an endless loop for
any input tuple. Recursively defing,g to be K, i.e., the procedure that results
from the procedure composition,&vith 5 in the place of s. Then the least fixed-
point for s is the sequence limit as k increases without bound ohis is
formalized in the lemma below.

Lm. 22 For any input tuple i, the result tuple returng@)ss in the
relationg;([®,] 1 k), that is,1t; ([®,] 1 k) is the set of input tuples for which
¢ returns a result tuple g, and L ®,] 1 k.

Proof By induction. This is trivially true for k=0. If it is true for any Kk,
then it is true for k+1, because given the inductive assumptg&gl)&'s an
effective realization of@,] 1 (k+1).

The immediate corollary is that 8 a monotonic sequence of partial
functions, and that it therefore has a least fixed-point s, and that this is an effective
realization of.

Determining that recursively defined procedures terminate is a little bit
trickier. It was fair to assume thgj was effective precisely because it was the
most undefined procedure, the one that never terminategisisBown to be a
terminating compositiowithoutassuming this of s, then s is in fact terminating.
This does not help much, because the composition rules above do not support any
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such deduction! (All compositions produce procedures that may fail to terminate
on some input tuples if any component fails to terminate.) Hence, for recursive
procedures, proving termination is thrown back on the usual methods, such as
showing that the recursion is grounded.

Termination is only at issue for input tuples for which there is no result
tuple that satisfies the predicate, i.e., for input tuples that should cause the
procedure to fail. If the recursive predicate realized by an effective procedure can
be satisfied for any input tuple, then the procedure is terminating. Thus, one way to
prove termination is to show that for any input tuple that satisfies a procedure’s
precondition, there exists a result tuple that satisfies the predicate. This is a more
general method of proving termination than showing that a recursion is grounded.

Summary of Procedure Operations

The table below provides a summary of procedure operations, the
logical constructs they realize, and their preconditions. Init, s and t are procedures
that realize the formulage andg under preconditions andp, or s is a procedure
that realizes the predicate in the litdrahder preconditioa andy is the
precondition for evaluatings terms.o is the output signature of s.

Operation| Realizes Precondition Purpose

st ¢Op aB Choiceeffectively realizes disjunction.

st (o]0} alp Concatenatiorcompletely realizes
disjunction.

s"\q Signature augmentatiomerely passes
through variables not used by s.

t(s) ¢Op a6 B) Sequential compositiarealizes conjunction.

p(s) (O2)o a p projects off the variables of.

Is 1(00)d a Complementealizes negation.

s/t (Ca)e a6 B) Division realizes universal quantification.

s I ally Variable binding for the literdl
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Operation| Realizes Precondition Purpose

= 0} a Indicates least fixed-point realization of a
recursively defined predicate.

Note that the precondition for sequential composition and division may
be weaker than the second component’s precondition and, regardless, is weaker
than the conjunction of the two components’ preconditions. This is the underlying
mechanism that allows the programmer to build run-time checks into a predicate
definition, making the predicate more complex, while weakening the precondition
of the program that realizes the predicate.

5.3 From Program Specifications to Code

The algorithm described below returns a procedure composition that
satisfies a given semantic description, providing that a prerequisite assertion
generated by the algorithm holds. This algorithm relies on a stock of procedures
built into the compiler that realize the primitive predicates and a library of
previously constructed programs. The algorithm employs the following variable

types:

IgclForm Represents a logical formula.

execProp Represents the desired execution properties and the desired
input and output signatures.

procComp Represents a procedure composition and its precondition.

The following functions are used:

ConstructionOf(F) Returns an enumerated type that indicates the construction
of the formulaF, i.e., whether it is a conjunct, disjunct, etc.

NeedComplete(P) Returns true if the execution propertiespecify complete
realization.

Fn(F) Returns the n-th component of the formEla

En(F,E) E specifies the desired signatures and execution properties

for F. En returns the needed signatures and execution
properties for the n-th componentfof

Concat(P1, P2) Returns the concatenation of the procedures P1 and P2 and
the precondition for the composition.
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Choice(P1,P2) Returns the choice composition of the procedures P1 and
P2, and the precondition for the composition.

..(P1,P2) For each procedure operator, there must be a function that
returns the composition procedure and its precondition.

MakePrim(F,E ) Given a literaF built from a primitive predicate and desired
execution propertiel, this returns the procedure that
realizes the literal.

MakeCall(L, F, E ) Given a literaF built from a defined predicate and desired
execution propertiel, this searches the libratyfor a
program that realizes the predicate with the desired
execution properties, and returns the procedure that calls
this program to realize the literal.

The algorithm is presented as a recursive functtompile . Recursion
ends in the construction of literals using the functiaaigePrim andMakecCall .
The former encodes the compiler’s knowledge of how to realize the primitive
predicates. The latter makes use of a library of programs that have been previously
compiled.makePrim will fail if there is no way to realize the primitive predicate
with the desired execution properties. (This is discussed in Chapteakédall
will fail if the library does not contain a previously compiled program that realizes
the desired predicate with the desired execution properties. Either will fail if the
literal uses complex terms for consumed input arguments to or output arguments
from the predicate. The pseudo-codedoinpile is shown below.

procComp Compile (// calculate composed procedure &
/I precondition from:
lgclForm Formula, // logical formula to realize
execProp Prop// desired signatures & exec. properties
i
procedure Procl, Proc2;
switch (ConstructionOf (Formula)) {
case Disjunction:
if (NeedComplete (Prop)) {
Procl =Compile (F1(Formula), E1(Formula, Prop));
Proc2 = Compile (F2(Formula), E2(Formula, Prop));
return Concat (Proc1, Proc2);
}
else
Procl =Compile (F1(Formula), EL(Formula, Prop));
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Proc2 = Compile (F2(Formula), E2(Formula, Prop));
return Choice (Procl, Proc2);

}

case Conjunction:
Procl =Compile (F1(Formula), EL(Formula, Prop));
Proc2 = Compile (F2(Formula), E2(Formula, Prop));
return SeqComp (Procl, Proc2, Proc);
case Negation:

case PrimitiveLiteral:
return MakePrim (Formula, Prop);
case OtherLiteral:
return MakeCall (Library, Formula, Prop);

}

This algorithm assumes that when there is a choice of execution
properties that1 ande2 can assign the component formulae so that the composed
formula has its desired properties — i.e., when more than one rule of the
procedural calculus might apply — tlEt ande2 oracularly select a rule that
makes the rest of compilation succeed, if such a rule exists. The algorithm is
actually implemented as a backtracking search that tries one rule, and if that fails,
then returns to the choice point and tries another. (The first example in Chapter 8
discusses this further.)

The algorithm above calculates a precondit@rthat is required by the
composed procedure. The programmer specifies a desired precoruditiothe
program specification. In order for the calculated composition to satisfy the
program specificatiom ] 3 must hold. This is the prerequisite assertion on which
successful code generation depends.

As described in Section 3.3, the compilation process has several steps.
These are repeated below, but with specific reference to the compilation algorithm
above and the form of the prerequisite assertion.
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(1) The programmer defines a predicate and specifies a program that realizes it.

(2) Compile the program. If the program fails to compile, display the points of
failure and permit the programmer to change the predicate definition or program
specification.

(3) Verify the prerequisite assertioti] 3. The programmer does this using theorem
proving tools.

(4) Generate C code from the procedure composition return€dimpile . Add the
compiled program to the library. Add theorems about the program specification,
generated during verification of the prerequisite assertion, to the theorem library.

The compilation algorithm given above infers the order in which
component formulae are made true from their textual order in conjunctions and
disjunctions. If compilation fails for this ordering of formulae, for example,
because the first formula in a conjunct requires more input to be realized, the
compilation algorithm does not try a different ordering. It is clearly desirable to
relieve the programmer of this responsibility. On the other hand, it is impossible
for the compilation algorithm to look at all logically equivalent forms of a
postcondition. This gives rise to the notion that a small number of rewrite rules
that preserve logical equivalence could significantly ease the programmer’s task
without too much burdening the compiler. (See Figure 23.)

W—»C compilation falls>

(original postconditio) — compilation
ewrite
rules algonthm

Figure 23: Combining logical rewrites with computation graph construction.

These rewrite rules would be applied to a formula during the
compilation algorithm if the formula fails to compile. This would enlarge the
number of formula for which the compiler successfully generates a procedure
composition. Alternatively, the compiler, after showing the programmer where
compilation fails, could allow the programmer to select from the set of rewrite
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rules to apply for a further try at compilation. In this scheme, the programmer
interacts with the compiler in searching for an order of computation that realizes
the desired formula.

5.4  The Contract between the Calling
Program and a Galois Program

In practice, a Galois program is a callable unit of execution (suchasaC
function) invoked from an application written in a traditional language (such as C).
A Galois program has two modes of invocation, knowerdsy points Thereturn-
first entry point binds the input arguments and calculates the first result tuple. The
return-nextentry point calculates the next result tuple. An effective program only
needs the return-first entry point, since it only returns one tuple.

A program has a return status. After it is invoked, either (1) the program
succeedsreturning the statusuccessnd the next qualified output tuple, (2) the
programfails, returning the statusilure, indicating that there are no more
gualified output tuples, or (3) the program loops forever. As described earlier, this
behavior is determined by the program’s output sequence s, where each invocation
of the program via theeturn-nextentry point advances the position k in the
sequence s(i). The program succeeds if (si§)f tuple, fails if (s(i))is , and
loops forever if k |s(i)|. Invocation via tletdurn-firstentry point sets k to 1 and
causes the appropriate behavior for k=1.

Each successful invocation of a Galois program changes the current
memory state. As described in Section 2.8, a memory state is equivalent to a state
specific submodel of the intended model. Hence, each successful invocation of a
program can be viewed as moving from one such submodel to a second. In the
simplest case, this change to the state specific submodel can be described as
follows. (1) Remove all data structure instances that are bound aoguments,
and all their components, from the submodel. (2) Add to the submodel all data
structure instances, and their components, that are in the output tuple. This is
shown in Figure 24, below.
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Calling program at invocation of P Calling program on return from P

4 ) 4 )

Program P a Program P

a
in x «\—E in x b
inxy -e—— ¢ inxy
out z out z f
o« d
\§ ¢

- ¢/

Figure 24: Invoking a Galois program.

Unfortunately, this simplest case does not always hold. For example, in
Figure 24, ifa andc have common parts, then removing/ould change the
memory state of the calling program in an unexpected way. This is the problem of
side effects that results from data aliasing. Aliasing can result in even worse
problems. For example, §f andc have common parts, the Galois program may not
behave correctly (may not meet its specification), because the value baund to
might change in unpredictable ways during the program’s execution.

The problems that arise from aliasing are prevented by the application
abiding by certain conventions. These conventions, and the subsequent guaranteed
behavior of called Galois programs, can be viewed as a contract between the
application and Galois programs. (See [41] for a discussion of this view of
programming.) The compilation process guarantees that Galois programs abide by
their end of the contract. The application programmer is responsible for seeing that
the calling application does likewise. (The fact that the compilation process
guarantees this for Galois programs argues that as much of the application’s work
as possible should be realized through Galois programs.)

The first requirement of the contract is that the application and the
invoked Galois program use correctly a common memory allocation mechanism.
There are two rules that determine the correct usage of the memory allocation
mechanism.

(1) Only memory that is currently allocated from the memory allocation mechanism
is included in the set of data structure instances that characterize the application’s
memory state, and only this memory may be modified.
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(2) Only memory that is currently allocated from the memory allocation mechanism
can be deallocated.

The memory allocation mechanism can be viewed as dynamically
extending or contracting the program’s address space. The program’s memory
state is the state of allocated memory, which is viewed as a state specific submodel
of the logic, i.e., a collection of data structure instances and their components.

The next few conditions are ones that the application guarantees for the
invoked Galois program. If the application fails to uphold these conditions, the
Galois program may execute incorrectly.

(3) The application passes to a Galois program, as its input tuple, a set of data
structure instances that satisfy the Galois program’s precondition.

(4) Each data structure instance passed as a consumed input argument is disjoint from
any of the other input arguments (whether or not consumed).

(5) Each data structure instance passed as a consumed input argument resides in a
collection of memory chunks, one for eattuct and array component, that
were allocated from the memory allocation mechanism with the appropriate size.
(The appropriate size forstruct  or array follows from its representation in C
data structures, as described in Chapter 7.)

Given the assumptions made so far, a Galois program guarantees
several things for the application. These are listed below.

(6) The Galois program satisfies its program specification.

(7) On a Galois program’s return from a failed execution, the state of memory is
unchanged from when the Galois program was invoked.

(8) On a Galois program’s return from a successful execution, memory is changed
only by (A) the deallocation of all memory in data structure instances that were
bound to the consumed input arguments, followed by (B) the allocation and
assignment of values to new memory in which data structure instances bound to
the output values now reside.

From the point of view of the application, a destructive update is
functionally equivalent to the deallocation of consumed input arguments, followed
by the allocation of memory for the output arguments. That some output arguments
reside partly in the same memory that had been used for consumed input
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arguments can be viewed as an accident of memory allocation. In fact, whenever
possible, a Galois program often short-circuits the memory manager by directly
updating the data structure instances that are passed as consumed inputs. This is
transparent to the application, except for the gain in efficiency.

The rules above do not prevent all problems from aliasing. The
application may still pass a consumed input argument that is aliased with or
referenced from a data structure instance unknown to the Galois program. (Note
that rule (8) is phrased in terms of what memory is deallocated, not in terms of
what data structure instances are changed or removed.) When an application does
this, it is most likely a mistake. There is no way that Galois programs can detect or
prevent this. And as long as the application abides by the rules above, the Galois
programs will continue to behave correctly, despite any destruction they are doing
to data structure instances or pointers they leave dangling in the “outside” world.
Of course, if the application mistakenly passes as a consumed input a data
structure instance on which the application later relies, it is unlikely that the
application will be able to keep up its end of the bargain for long. The next rule
below sharpens rule (4), to prevent this last problem due to aliasing. Clearly, this
rule is not required for Galois programs to behave correctly. The previous rules
suffice. It is more an indication of risky programming that most times will cause
the application to violate one of the previous rules.

(9) Each data structure instance passed as a consumed input argument is disjoint from
any data structure instance in memory except its own components. All pointers
(with the exception of the argument binding) that point into the data structure
instance are also part of it.

Given that the above rule is followed, the guarantee in (8) can be
sharpened. The way a Galois program changes memory state now satisfies the
clean picture shown in Figure 24. The final rule below states this sharpened
guarantee.

(10) On a Galois program’s return from a successful execution, memory is changed
only by (A) the removal of data structure instances that were bound to the
consumed input arguments, and their pieces, and (B) the addition of data structure
instances bound to the output values.
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The remainder of this work assumes that the application upholds its end
of the above contract.
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6. Computation Graphs: An
Intermediate Representation

The previous chapter described a procedural calculus and a compilation

algorithm that generates a procedure from a program specification. The generated
procedure is represented as an expression in the procedural calculus. A different,
graphical form for representing procedures is presented below. This form serves as
an intermediate step between compilation and code generation. There are several
reasons for introducing an intermediate graphical form.

Visual display: A graphical representation provides a better visual display of the
generated procedure, for example, to show where the compiler fails when the
logic is inadequately refined for compilation, to show the order of computation,
and to show the origin and transmission of preconditions through the procedure.

Advanced compilation: The compilation algorithm presented in the previous
chapter fails when memory deallocation needs to be pushed into procedures that
consume memory. This chapter presents an algorithm to deal with this problem.
This algorithm is most easily presented in terms of graphs.

Support for optimization: Compiler optimization techniques typically deal with
programs expressed as graphs that explicitly represent control and data flow [18].
The introduction of a graphical intermediate representation paves the way for
further program analysis and optimization.

The exposition below shows how a computation graph is derived from a

formula in the logic, and it assigns a computation graph a semantic map function f
as described in Section 4.5. It also describes how a computation graph can be
augmented witleontrol informationthat represents the choices made during
compilation. There are two important properties of computation graphs, for their
service as an intermediate representation:

(1) The computation graph and the formula from which it derives have the same

semantic map function.

(2) Computation graphs, when augmented with control information, are equivalent to

procedure compositions.
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These properties, and the different processes involving the
representations, are shown in Figure 1, below.

defining

The derivation of a computation graph
fixes the direction of data flow.

formula

N _
Semantic map fix or
is preserved optimize
Q computauon modified
fir-2
graph graph
Compile
v Augment Augment

procedure

composition

modified Augmenting a computation graph with
rocedure control information makes it equivalent
P to a procedure composition.

Figure 1: The relationships between the representations.

The derivation of a computation graph from a formula fixes the
direction of data flow. (Rewriting the order of conjunctions and disjunctions, as
described in Section 5.3, will change the computation graph.) The control

information describes which procedure compositions are used when the specifying

formula permits a choice.

6.1 Introduction to Computation Graphs

A computation graph is a directed acyclic gr]aplfith annotatef

nodes. A computation graph is constructed according to a set of composition rules

1 As usual, airected graphg is a set V ohodes(vertices) and a set E afcs (edges).
Each arc BE is an ordered pair <m, n> in¥. The arc e is anutgoing arcfor m,
which is thetail of e, and aimncoming arcfor n, which is théheadof e. Arcs are said to
leave, enter, or impinge on nodes, and nodes to carry arcs. If <m, n> is an arc, the node n
is said tosucced the node m. A node issmurceif it is the successor of no other node,
and asinkif no other node succeeds it. Sources and sinkteargnal nodegsall others
areinternal nodesLet R be the transitive closure of the successor relationship, i.e.,
<m, p>isin R if <m, p>is an arc, or if <m, n>is an arc and <n, p>is in R. R is called
thereachability relationand a node p is said to be reachable from m precisely when
<m, p>isin R. A directed graph &yclicif no node is reachable from itself.
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described later. For now, only one implication of this construction is important:
every computation graph has one source node and one success node. The nodes
used in computation graphs are shown in Figure 2, below.

@ Start node: Annotated with a relational signature.
signature

4©t)  Success node.

@) Failure node.

— L
NES

(literal, 4, B)

Literal node: Annotated with a literal and two signaturagsand3.

—XP > . . . .
o Recursion node:Annotated with a literal and two signatures.
(literal, 4, B)

-

signature

4<: Branch node.

>4» Union node.

Deallocate node:Annotated with a relational signature.

o= Universal quantification node: Annotated with a signature.
signature

Figure 2: The basic nodes.

Each node type has a fixed number of incoming and outgoing arcs, as
indicated by its icon, except for the branch node, which has one incoming arc and
two or more outgoing arcs, and the union node, which has two or more incoming
arcs, and one outgoing arc. The literal node and recursion node each have two
outgoing arcs: auccess aroon top, and &ilure arc, beneath. The universal
guantification node has two incoming arcs,ahiginal arc and theest arc

Semantically, each internal node, except the union node and universal

2 Formally, anode annotatiors a function f from the set of nodes V into some set, (V).
Similarly, anarc annotationis a function g from the set of arcs E into some set, g(E).
Annotations are usually viewed as labels, icons, or decorations attached to nodes and
arcs.
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quantification node, denotes a functigna — 2% that transforms each input

tuple into a result relation, whereand3 are the signatures of the input tuple and
result relation, respectively.can be viewed as a function that maps a relation over
4 into a relation oves, by applying it to one tuple at a time and taking the union
of the result. Formally, define the relation functjon 27 - 2% by:

t0 £ (R) = (X)(x OROtO £(x))

One can view each input relation as being presented to the node along
its incoming arc, and the node as presenting a result relation along each of its
outgoing arcs. The sole role of the start node is to paisstehtuple on to its
outgoing arc. (This tuple has the signatotéat is indicated by the start node.) By
chaining the relational functions of the internal nodes, each arc e in the graph is
assigned a functiofi: 7 - 2% that transforms the initial tuple into a relation.

(See Figure 3.) If e is the incoming arc to the success nodef thethe
denotation assigned to the computation graph as a whole, vy‘rj]{ten

Computation chaining all node maps creates
graphg. fethat mapg to S

fx mapsRtoS If eis the incoming arc to

initial the success node, thgris
tuple the semantic denotation of

t R S ;
C’»—» %W’B the computation graph as

some node awhole, i.e.f; = fe.

Figure 3: Denotational semantics for the computation graph.

The terminal nodes can be viewed as an interface for the computation
graph as a whole, where the start node accepts an initial tuple, and the success node
returns a result relation. The relation returned by the success node provides the
graph’s semantic denotation as a function that maps a tuple to a relation. (It will
turn out that the failure node returns the initial tuple precisely when the success
relation is empty.)

The functionf defines a relation, and hence a signature, for each arc e.
The signature of an arc can be viewed as indicating what variables are alive at that
portion of the graph. This signature is calledthsable scopet the arc. The
deallocate node has as its sole function the removal of variables from the current
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scope. There is no corresponding allocate node. Instead, variables are introduced
by literal or recursion nodes. In the next chapter, the notion of variable scope will
be carried forward into a more detailed look at memory management.

To complete this account of denotation for computation graphs, it
suffices to describe what function is assigned to each internal node. The relation S
produced by an internal node is described below in terms of (1) the node’s
annotations, and (2) the node’s input relation, R. For literal and recursion ngdes, S
is the relation presented to the success arc, aisdis relation presented to the
failure arc. For the universal quantification nodgj$the relation passed along its
original arc, and Ris the relation passed along its test arc.

Branch node: S = R.This node’s output relation is a copy of its input relation. Its
output relation is placed on all of its outgoing arcs.

Union node: S =[J; R;. This node’s output relation is the union of its input relations. It
is the only node that has multiple input relations.

Universal quantification node: (OXOX)(0 =S = @ y=xR)/(0x=xRy)). Like the
union node, this node performs a relational operation. First, divide the input
relations into partitions each of which have a commioralue, wherex is the
signature of the node. In each partition, the result is the original relation divided
by the test relation. In other words, for eackialue, S contains all of the tuples in
R, if R; also contains these tuples, otherwise, S contains none of these tuples.

Deallocate node: S = RA. This node is annotated with a relational signatutéat
indicates what columns to remove from its input relation R.

Literal node: Sg=T1i3(RM[l]), St = R-TR)(Sy). The node is annotated with a litetal
in the logic. The predicate symbolldt either part of the base logic or its
predicate is realized by a previously compiled program. The node is also
annotated with two signatures, tinput arguments4, and theeturned
arguments3. Their union must equal the variabled.ofhe denotation of this
node is the functiofi: 62 — 22 where b1 £(a) = axBO[I]. ([I]is the
denotation of. This construction is described more fully in Chapter 5.)

Recursion node: $=R™ LFP(G), & = R-T(r)(Sy). The only difference between the
literal node and the recursion node is that the predicate for the lgitehes
predicate being defined by the formula. In terms of computation graphs, this node
can be viewed as a recursive instantiation of the computation grapmat this
leads to a least fixed-point, and that it mirrors the semantics of the logic, will be
proved at the end of Section 6.2, below.
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As mentioned earlier, most nodes can be understood in terms of what
result tuples they produce from each input tuple on their incoming arc. The union
and universal quantification nodes must be understood as operating directly on
relations, the former because it has several incoming nodes, and the latter because
it performs a relational divide, which cannot be decomposed into tuple operations.

6.2 Constructing Graphs from a Program
Specification

This section describes the constructions that generate computation
graphs from a program specificatiéh,The relevant parts ¢ are the formulap,,
that defines the new predicatand the input signature and result signatures)d
Q. Each construction rule applies to a formula of the logic. Each construction
generates a computation graph from the nodes described in Section 6.1, possibly
combined with computation graphs that were constructed for syntactic pieces of
the formula. Each construction yields a directed acyclic graph with one start node,
one success node, and one failure node. Most important, each construction
preserves the following semantic invariants.

Semantic Invariants for Computation Graph Construction:

(1) Meaning of failure node: If a computation graply denotes the functiofi then
the incoming arc e to failure node denotes the fungtiamherey (t)=t if £(t) is
empty, and; (t) is empty iff(t) has tuples. (For an input relation R, this means that
g (R) contains precisely those tuples from R that generate no tuglg®fin)

(2) Preservation of semantic denotationlf a computation grapl is constructed
from a program specificatid?) whose defining formula &, with input
signaturel and result signaturg, then its semanti€; is the same as the
semantic mapp for the program specification. (See Section 4.5.)

The base construction, if the formubg is a non-recursive literd)
generates the computation graph shown in FigureahdQ are the input
variables and result variables specifie@.ihis construction trivially satisfies the
semantic invariants.

www.manaraa.com



104

Figure 4: Construction for a literal.

The construction for positive, recursive literals is identical to the one
for other literals, above, except that a recursion node is used instead of a literal
node. It is a stickier issue to show that it satisfies the semantic invariant. This is
addressed after the other constructions are explained.

Graphs are composed by removing terminal nodes and connecting their
arcs elsewhere. For example, the upper part of Figure 5 shows unspecified
computation graphs for formul®sandg, each drawn as a shaded body with arcs
connected to terminal nodes. The lower part of Figure 5 shows these are combined
to form a larger computation graph, f @.

(&8 s D) &— e s D)
a B
Computation B Computation B
graph for®. graph fore.
+ @) © -
I

—
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graphG for 8 O . Of

»
>

Figure 5:  Computation graph for logical conjunction.

The computation graph shown in Figure 5 for conjunction trivially
satisfies the first semantic invariant, but can fail the second if the input and result
sets for the two component graphs do not synchronize correctly. For example, if
4={x} and Qg={y} (meaning that x is absent frofis output relation), an&={y}
andQ={x}, then the graph is not even syntactically correct, because the incoming
arcs to the union node have different signatures ({} for the upper arc, and {x} for
the lower). Moreover, the second invariant cannot be satisfied, because y must be a
column in either the domain or rangef@fyy, but it is in neither foy ;.
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The semantic correctness of this first construction, and of the remaining
ones, depends on certain syntax rules being met. Some of the syntax rules pertain
to the individual constructions. (Indeed, each graphical construction is a kind of
syntax rule.) There are a few syntax rules that apply to all of the constructions.
These are worth stating now. Notice that the descriptions of the nodes in
Section 6.1 show how to calculate a signature for each node’s outgoing arcs, given
signatures for its incoming arcs. Because a computation graph is acyclic, itis
trivial to run this calculation from the start node to the success and failure nodes.
Each rule below constrains the nature of a node, sometimes in terms of the
signatures on its incoming arcs, or the rule asserts some syntactic relationship
between a graph and the program specification from which it is derived.

General Syntax Rules for Computation Graph Construction

(1) Recursive literals must be positive: Recursive literals may not be negated, nor
may they appear in the conditional part of an if-then—else, nor in the conditional
part of a universal quantification construct. (These constructs are described
below.)

(2) Input signatures to the union node: Input relations to union nodes must have the
same signature.

(3) Input signature to the deallocate node: The signature of the input relation to the
deallocate node must contain the node’s signature. (These first three rules were
adumbrated above.)

(4) Correct start, success, and failure node signaturegihe signature calculated
for the arc leading to the success node musgtdhdhe annotation on the start
node and the signature calculated for the arc leading to the failure node migst be

The remaining rules apply to the literal and recursion nodes. Recall that these nodes
are annotated with a literd],and two signatures, theput argumentsa, and the
result argumentss.

(5) Consistency of annotationsThe union ofa andBmust equal M|, the variables
in the literal,l. Each variable irB— 2 (the output arguments) ard—3 (the
destructively consumed input arguments) must appear exactly once as an actual
argument of. (The input arguments, variablesdnn 8, can appear multiple
times, and can appear embedded in terms that are argumegts to

(6) Adequate input: The signature of the incoming arc must contain
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(7) Write once: The signature of the incoming arc must not intergeet. (8—4 is
the output set for the node.)

These rules winnow the set of computation graphs that would otherwise
be constructed from a program specification. In essence, they insist on a consistent
order of computation, so that variables are not assigned multiple values and are
assigned values before they are used as inputs. Given these rules, the construction
shown in Figure 5 easily satisfies the semantic invariants, 8igeaerates values
for some columns that are joined to the initial tuple t, @juins new values to the
result. BothB andg may take away columns, but only from the original input tuple.
Thus, the output is some projection xB] = [¢@], and so the computation graph
preserves the denotation of the formula.

The construction for disjunction is very similar to that for conjunction.
Instead of the two component graphs being chained along success arcs, leading to
the success node, they are chained along failure arcs, leading to the failure node.
This construction is shown in Figure 6, below. For similar reasons, it maintains the
semantic invariants if the general syntax rules are met.

+ &P

Computation
graph for@ O @.

e

Figure 6: Construction for disjunction.

The construction for if-then—else, shown in Figure 7 below, combines
elements of both previous constructions, as one would expectgsihagl] ¢ is
equivalent tq0 O @) O(~6 O@). In fact, this construction subsumes both
conjunction (by setting=F) and disjunction (by setting=T). For similar reasons,
it satisfies the semantic invariants.
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Figure 7: Construction for if-then—else.

An existentially quantified formula is implemented by a computation
graph that produces a result tuple that satisfies the inner formula, and that then
“forgets” the quantified variable. This is analogous to function skolemization. The
computation graph is shown in Figure 8 below. By swapping the success and
failure nodes, this construction realize§lx¥§0. This latter requires that have as
output variables precisely thosein

Computation
graph for(Ox)e.

Computation
graph for[([1x)6. gE gD

Figure 8: Construction for existential quantification.

Universal quantification is also treated constructively. Only an if-then
formula can be universally quantified. The conditional component generates
values for the quantified variables, and the consequent must hold for all of these
values. The universal quantification node is used to “turn off” the results from the
consequent if the consequent fails for any of the values generated by the
conditional. The construction for universal quantification is shown in Figure 9
below.

e — — O X0
X X X by

Computation graph Tl )

for (09)(® 0 @). 5

Figure 9:  Construction for universal quantification.
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There are three sets of variables involved in the construction, identified
by the signatures, 9, andz. x is the signature of the initial tuple. The
conditional componen6, of the if-then—else generates valuegforhe
consequentp, generateg tuples for eacty 9 tuple. For each input tuple, the
universal quantification node “turns off” the output to the success node except for
z tuples that are generated for@ltuples. For any initial tuple, if there are no
gualifying z tuples, the initial tuple takes the failure arc out of the consequent.
Thus, the meaning of the failure node and the preservation of logical semantics are
preserved for the success path out of the conditional.

The alternatived, generateg tuples when there is np tuple that
satisfies the conditional for the initiltuple. This is usually used to generate
default values for the variables. It trivially satisfies the semantic invariants.

Recursion

The discussion of the above constructions, excluding recursion, can be
summarized in a lemma.

Lm. 10 The syntax rules and the non-recursive constructions yield
computation graphs that preserve the semantic invariants. In particular, any
computation graph so constructed has the same semantic map as the
program specification from which it is derived.

When the nodes were explained, the precise semantics of the recursion
node was finessed, with reference to a later explanation. It is now time to give a
more precise definition of the semantics of the recursion node, and to show that it
preserves the semantic invariants. As was done for recursively defined predicates
in Section 4.3, a least fixed-point semantic is defined below for computation
graphs.

Given a recursion node r annotated with input varialalesutput
variabless, and literal (whose predicate is), definef,%: 2 - 2% by £,%a)={}.
Notice that in building up the least fixed-point for recursively defined predicates,
[@,] 1 O is defined to be empty. Defiyié+1 to be the denotation of any computation
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graph forP, when recursive nodes in it are assigned the denopé\iic(ﬂf the
construction rules do not provide a computation grapR,fdren there is no point
in assigning a denotation to its recursion node.) The important claim is that this
series of denotations for the computation graph tracks the series whoseHmsnit is
denotation.

Lm. 11 bOf/(a) = a-b0 [@y] 1]

Proof That this is true for i=0 provides the basis for an induction. Since
the non-recursive nodes preserve semantic meaning and begdugie-1)
is defined as one non-recursive applicatiop,@he inductive step holds.

Sincefri tracks fp,] 11, it is also a monotonic sequence, and has the
same least fixed-poiﬁ‘t]’his least fixed-point is the denotation assigned to the
recursion node. Because it is a fixed-point, it has the same denotation a®any of
computation graphs, and this is the denotatio® dthis proves the desired
generalization of Lm. 10:

Thm. 12 If the computation graplj is constructed fror® applying the
construction and syntax rules, thén= fp i.e., the upper triangle in
Figure 1 commutes.

6.3 Augmenting Computation Graphs with
Control Information

The graph constructions described in the previous section follow from
the logical construction of the specifying formula and, with two exceptions,
provide exactly the same information as the corresponding procedure composition.
These exceptions are non-recursive literal nodes and the construction for
disjunction. The former construction lacks any information about what procedure
is used to realize the literal, and what its semantic description is. The latter

3tis easy to prove that a computation graph has a least fixed-point denotation, without
referring toP’s least fixed-point, but their equality would then have to be proved
separately.
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construction corresponds éttherthe choiceor the concatenate procedure
operations.

Note that each disjunction corresponds to a unique union node in the
computation graph. Aaugmented computation graplkds additional annotations
to union nodes and literal nodes. It adds to each union node (1) an indicator of
whether the choice or concatenate operator is desired, and to each literal node (2)
the name of the procedure chosen to realize the literal, and (3) the procedure’s
semantic description. For each literal node, the chosen procedure must have an
input signature and result signature that matches those of the literal node.

There is an exact correspondence between procedure compositions and
augmented computation graphs. Given an augmented computation graph, the
procedure composition is obtained by deconstructing the graph, and applying the
corresponding procedure composition for each graph construction. At
disjunctions, where the only choice of procedure compositions obtains, the
annotation of the union node tells which to make. At literal nodes, their annotation
tells which named procedure belongs at that place in the procedure composition.
The reverse process generates a computation graph from a procedure composition.

This suggests a compilation algorithm that is an alternative to the one
presented in Section 5.3. It is sketched below, at a very high level:

1: construct ComputationGraph;

2:find Controlinformation to satisfy ProgramSpecif ication;
3: perform Fixups & Optimizations;

4: convert ComputationGraph to ProcedureComposition.

The next section describes an algorithm that modifies the computation
graph for memory management. Its role is in step 3 of the above algorithm.

6.4 Memory Management

The compilation algorithm described in Section 5.3 will fail on
programs that have consumed input arguments. It make no provision for
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deallocating these variables on the successful termination of the composed
procedure. This is remedied below, through adjustments to the computation graph.
To adjust a computation graph for the desired result signature, a deallocation node
is inserted before the success node that discards the consumed input variables.
This is shown in Figure 13, below.

(—
Augmenting a computation
graph for consumed inputs.

Figure 13: Construction for consumed input arguments.

This does not yet solve the problem. The deallocation node requires a
procedure that deallocates the variable. (In terms of the procedural calculus, a
deallocate node is equivalent to a projection procedure. See Section 5.2.) Several
related problems arise.

* The compiler contains built in procedures to deallocate variables whose sort does
not contain pointer references or sets. (For obvious reasons, the compiler cannot
include procedures to deallocate non-contiguous data structures.)

» There may be a literal in the program’s body that is only realized by a procedure
that consumes an input variable. (This may be where the programmer intended the
deallocation of a non-contiguous data structure to occur.) The deallocation node
placed at the end of the composition graph in Figure 13 somehow must be
percolated back to the literal that needs to deallocate its input variable.

 When there is a choice between a procedure that consumes an input invariable and
one that does not, if the variable must be deallocated anyway, then it is more
efficient to do the deallocation “deeper” in the program by choosing the procedure
that consumes its input variable.

One literal that often may and sometimes must consume one of its input
variables is data structure isomorphism. The compiler realizes data structure
isomorphism (1) by copying a data structure, or (2) by destructively updating a
data structure. The latter is clearly more efficient. The former is possible only
when the data structure is contiguous or when the programmer has written a copy
constructor for the data structure of concern.

www.manaraa.com



112

If a literal node appears immediately prior to a deallocate node, then
deallocated variables that are pure inputs to the literal can be removed from the
deallocate node and made consumed inputs on the literal node. This is shown in
Figure 14, below. Deallocation is pushed into the procedure that realizes the
literal. (In particular, this would turn data structure isomorphism from a copy into
a destructive update.) Obviously, this should be done only if the procedure library
has a procedure that consumes the concerned variable. Any deallocate node that is
left with an empty signature can be moved from the graph.

Before adjustment: After adjustment: Prerequisite:
—— WLy TH> WLl A0 1nQ
(l, I, Q) Z (l, I, Q—A) Z-A

Figure 14: Creating literals with consumed input arguments.

To make effective use of procedures that consume their inputs,
deallocate nodes, especially the one placed at the end of the computation graph as
shown in Figure 13, should be pushed as far toward the front of the graph as
possible. In doing this, certain constraints must be followed. First, a deallocation
node cannot be pushed past a node that makes use of its variable. Failing to meet
this constraint would commit the programming mistake of using a variable after it
was deallocated! Once a deallocation node is pushed forward to a previous node
that uses the same variable, it may be at the point where it can be eliminated by
realizing the previous node through a procedure that consumes the variable, as
shown in Figure 14. Second, if a deallocate node is pushed forward of a union
node, it must be replicated along all incoming paths. Failure to meet this constraint
would commit the programming mistake of deallocating the variable along some
paths of execution, but not along others. Third, to be pushed past a node with
multiple output arcs, the deallocation node must be present on all those output
arcs. (This is the converse of the previous constraint.)

The algorithm below pushes variable deallocation as far forward as
possible. This maximizes the amount of destructive update that is possible. The
algorithm assumes that each deallocation node concerns exactly one variable. (If a
deallocation node has several variables, it can be turned into a sequence of
deallocation nodes, each with only one variable.) The algorithm marks
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deallocation nodes as they are processed. Each node’s mark iRedidyer
meaning that it can be pushe&dit , meaning that it has been pushed as far as
possible until other deallocation nodes are pushedpati] meaning that the
node cannot be pushed any further.

OptimizeDeallocation () {// The graph is a global variable
node DeallNode;
MarkAll (Ready);
while (ChooseReadyDeallocNode (DeallNode))
Push (DeallNode);

/I The function below pushes a single node forward

Push (DeallNode) {
varName x = Signature (DeallNode);
node CNode =PreviousNode (DeallNode);
if (VarUsedInNode (CNode, x))
Mark (DeallNode, Done);
else if (NbrOutArcs (CNode) > 1) {
if( all nodes on out arcs are same deal | ocat e){
RemoveFromGraph( al | nodes on out arcs);
Insert (DeallNode, InArc (CNode));
}
else Mark (DeallNode, Wait);
else if (NodeType(CNode) == Union) {
RemoveFromGraph (DeallNode);
for (each Arcleading to CNode) {
new node NewNode;
NewNode =Insert (DeallNode, Arc);
Push (NewNode);
delete (DeallNode);
}
else{
RemoveFromGraph (DeallNode);
Insert (DeallNode, InArc(CNode));
CNode =PrevNode (CNode);
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}

The firstelse if merges a set of deallocation nodes (for the same
variable) that occupgll the outgoing arcs of a node. This latter node has multiple
outgoing arcs and, because of this, it blocks the forward progress of any lone
deallocation node that is pushed forward to one of its outgoing arcs. The
deallocation nodes that are pushed forward to the blocking node, prior to the one
that reaches the last outgoing arc, must wait for this merger. The s#sond
replicates a deallocate node on all the incoming arcs to a union node.

6.5 Reasoning on Computation Graphs

Reasoning about Galois programs as a whole is easy. If a program
successfully executes, then the values bound to its arguments satisfy the formula
that the program realizes, i.e., the postcondition in its specification. If a Galois
program fails, then there are no result values that, together with the input values,
satisfy the postcondition.

The problem is that it is sometimes necessary to reason péaof a
Galois program. The computation graph intuitively displays the order of
computation in a program. It incrementally makes true parts of the postcondition,
until the postcondition is either satisfied as a whole, or the computation cannot
proceed. The notion of what “is made true by the computation graph up to a certain
point” is formalized below. This helps programmers to understand how
prerequisite assertions are constructed, and how to modify predicate definitions to
achieve desired computations. We assume, in the exposition below, that deallocate
nodes for consumed input variables have not yet been propagated forward.

The Arc Invariant

Section 6.1 defined a relational mgp, for each arc e in a computation
graphg. For each input tuple i to the computation grafi) is a relation
assigned to the arc e. If e is incoming arc to the success nodé¢.ibehe
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semantic map assigned to the graph as a wﬁgle‘l,’hm. 12 states thgﬂg is the
same as the semantic map for the program specification from whdehives.

No special meaning was assignedg{dor arcs other than the one that
leads to the success node; they were merely intermediate steps in the calculation.
The task now is to define a logical formdieor each arc e, such thap¥fe. P is a
logical description of the arc’s relational map, and hence, describes what can be
assumed of the input tuples to its target node. In short, this formula describes
“what has been made true” up to that point in the computation graph. It is called
the arc’sinvariant

As a starting point, if e is the arc leading from the start node, then define
®=True . As with the definition of o, P, is calculated in a depth-first fashion
along the computation graph. At any node, let e be an outgoing arc and assume that
®4 is available for each of the incoming arcs, d. The following rules detednine
(the invariant for the outgoing arc).

Branch node: ®,= ®4. The invariant on each outgoing arc is identical to that on the
incoming arc.

Union node: @, = [0y ®4. The invariant on the outgoing arc is the disjunction of the
invariants on the incoming arcs.

Universal quantification node: ®, = (09)®y4. The invariant on the outgoing arc is
the universal quantification of the invariant on the incoming arc, over the
guantified variables that annotate the node.

Deallocate node®, = ()®4. The invariant on the outgoing arc is the existential
qguantification of the invariant on the incoming arc, over the quantified variables
that annotate the node.

Literal and recursion nodes:®,=®y 0L and ®g. =Py O (0z)(~L). The invariant
on the success arc is the conjunction of the invariant on the incoming arc with the
literal that annotates the node. The invariant on the failure arc is the conjunction
of the invariant on the incoming arc with the negation of the literal that annotates
the node, universally quantified over the literal’s output variables.

The logical compositions above are precisely those for which the
corresponding relational compositions in Section 6.2 provide a model. There is no
need here to make special provisions for recursion, since the model of recursively
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defined formula is already well defined. Relying on Thm. 12, the following holds.

Lm. 15 If the computation grapl is constructed from a program
specificatior? applying the construction and syntax rules given in the
previous sections, then for each arcsfe.

Note that the signature of e is precisely the set of free variables of
An assertion is said to hold at a node with unigque incoming arc e if the assertion
can be derived from the logical axioms, the precondition in the program
specification , and the arc invariab{. Any such assertion is satisfied by any of
the tuples iry (i), for any initial tuple i that satisfies the precondition from the
program specification .

The Preconditions for a Literal Node

A procedure chosen to realize a literal, whether a previously compiled
Galois program or primitive procedure built into the compiler, may require a
certain precondition to hold on its input tuples. It suffices for the precondition to
hold at the concerned literal node. (See Figure 16.)

some node x with

preconditiona
G»—» - XL >
arc ewith —a
invariant ®

Program’s
precondition . For x, need(®@0®P)0 a

Figure 16: The effects of a literal node’s precondition.

In short, to verify the concerned literal node with preconditipthe
programmer must proy®U®)J a, where®d is what the computation graph has
made true up until the concerned node, @ns the precondition from the
program’s specification. The conjunction of all assertions of this form for all nodes
in the computation graph is precisely firerequisite assertionalculated in
Chapter 5. Being able to see these assertions individually, at the concerned
locations in the graph, helps the programmer understand from whence they derive
and how changes in the program specification or predicate’s definition will affect
the prerequisite assertion.
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7. Producing C Code

Procedural semantics can be discussed precisely and fully without
reference to a particular implementation. The compilation algorithm in Chapter 5
generates a program in the form of a procedure composition in the procedural
calculus. Chapter 6 describes an equivalent graphical representation, the
computation graph. Both representations of a program fully describe its behavior.

Compilers are often divided into a front-end that turns input in the
source language into an intermediate form, and a back-end that produces code in
the target language from this intermediate form. This latter step is often the easier
of the two. The Galois compiler puts more distance than usual between the front-
end and back-end, because verifying the prerequisite assertion (and possibly
rewriting the postcondition) are necessary steps between front-end compilation
and back-end code generation.

The major parameters for a back-end are what language to target, what
calling conventions to use, and how to represent data in the target language. To
illustrate the conversion of logic into code, this chapter describes code production
in C. The back-end described here is meant to serve as an example of code
production and provides the context for the examples. The C code is not highly
optimized.

input tuple > S » oOutput sequence
convention cod convention
for data productio for data

representatio representatio

input arguments———»  C function ——» output sequence

Figure 1: The role of code production.

The code produced by the back-end for any procedure s must have a
concrete behavior that mirrors the abstract behavior defined for s. In other words,
the back-end described in this chapter generates from each proceduresa C
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function that causes the diagram in Figure 1 to commute.

The target language is C as described by the second edition of the
classic text by Kernighan and Ritchie [29]. It makes use of several of the “new-
style” conventions. (Refer to Appendix C of [29].) In particular, the type of
function arguments are declared directly in the argument list of the function
header, and generic pointers are given the ¢gjge . One exception is made:
comments are written in the style of C++, in order to avoid clutter in the
presentation.

7.1  Skeleton Code for Programs

The narrative below describes how code is produced for a logic
program “from the outside-in.” That is, given a procedure composition, in the form
of an expression in the procedural calculus or of a computation graph, code
production begins with the outermost composition, it generates skeletal code for
this composition, remembering where unfinished “holes” corresponding to
components of the procedure composition remain, and it then repeats this process
on the components, filling in the “holes.” The outermost shell is the skeleton for
the C function that implements the logic program:

int ProgNane( argunent list)

{

definition of G_success;
definition of G_stop;
/.. generated code for ProgName

}

The skeleton above demonstrates several conventions that are followed
in the following presentation. First, in presenting code production, we use the C++
convention for comments, i.e., everything from™to the end of the line is a
comment. Second, a line that contains only a comment that begins with an ellipsis
(.. ) denotes a “hole” to be replaced by further generated code. The comment can
be viewed as a placeholder that indicates what code will replace it. For example, in
the skeleton above, the commefnt. “generated code for ProgName " will be
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replaced by the code generated for the procedure composition that implements the
specified program. Third, italics are used to indicate code that varies according to
some rule that will be explained in the text. For example, the definition of

G_success andG_stop are shown in more detail later, when two more specific
versions of the function skeleton are explained. Fourth, variables that are artifacts
of code production — as opposed to representing logical variables — are prefixed
by G_. These variables are summarized at the end of Section 7.2.

Every program contains the varialdesuccess , which is initialized to
true in C’s fashion of dealing with booleans — i.e., to 1 — and the varGabiep ,
which is initialized to false —i.e., to 0. The variablesuccess can be interpreted
roughly as answering the question: it still possible for the program to generate
another result tuple that satisfied the program specification? The vasiahle
can be interpreted roughly as answering the question: should execution break out
of the current generator? The use of these variables will be explained further as
this chapter proceeds.

Data Representation

Values in the basic sorts are represented by C data types as described in
the table below.

Galois sort C type
integer & int int
address & addr void*
character & char char
floatingPt & float float
sort(] type[]
sort{} objects of the corresponding type
allocated in the heap
struct samestruct  without set fields
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In C, there is no need to distinguish between the base sorts and their
corresponding addressed sorts. Thus, values in bothdie sort and thént
sort are represented in C byiain . The correspondence between the logic’s sorts
and C’s types has been made straightforward.

Variables in the code are eithdirect orindirect. All destructively
consumed input arguments, output arguments, and existentially quantified
variables of an addressed sort are indirect, and are declared with one level of
indirection beyond that in the above table. In other words, their declarations are
type* rather than jusype as shown. When an indirect variable is passed to a
direct argument, it is dereferenced in the procedure invocation. Direct variables
are never passed to indirect arguments.

Two Kinds of Programs

For the purpose of code production, programs are categorized as
generators or non-generators. Generators are programs that potentially produce
more than one output tuple for each input tuple. Hence, generators are complete
programs, excluding functions. (Complete programs produce all output tuples that
satisfy their logical formula. A function is complete, but is known to have at most
one output tuple for each input tuple.) Non-generators produce at most one output
tuple for each input tuple. These are effective programs and function programs.

The code produced for a program takes one of two forms, depending on
whether or not the program is a generator. A generator has an initial, integer
argumentg_first , that, if non-zero, indicates that the program should generate
the first output tuple for the passed input tuple. (See Section 5.4 for a discussion of
program execution.) If this argument is zero, the program generates the next output
tuple in the sequence. This argument is passed by reference, and is always returned
equal to zero. The skeleton of the C function that implements a generator program
is shown below in detail:

int  ProgNane (int*G_first, predi cate argunents)

{

staticint G_success;
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staticint G_stop;
if /G_first) gotolInside;
G_success=1;
G_stop=0
/I .. first part of procedure composition for ProgName
/I Success continuation of ProgName:
return G_success;
/I Output deallocation unnecessary (read below)
Inside:
/I ..remainder of procedure composition for ProgName
return O;

}

All programs are implemented as integer-valued C functions that return
one when they generate an output tuple and that return zero when there is no
gualified output tuple, or in the case of a generator, no further output tuples. As the
above skeleton shows, a generator program retains state between invocations that
determines its location in the output sequence. Note the difference in the
declaration of internal variables between the skeleton above for a generator
program and the skeleton below for a non-generator program.

int ProgNanme( predicate argunents)

{
intG_success=1;
int G_stop=0;
/.. body of ProgName
return (G_success);
}

In a generator program, all variables (except the function’s arguments)
are declaredtatic . Because of this, they are initialized through explicit
initialization statements rather than in their definition. For simplicity, the
remaining exposition of code production assumes that code is produced for a
program that imota generator. When similar fragments are produced for a
program that is a generator, the only differences are (1) that variables are declared
static , and (2) variables are initialized by an assignment statement immediately
following their definition, rather than in the definition itself.
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The predicate arguments are the arguments in the logical definition of
the predicate that the program realizes. These are declared with the types
previously described. Consider a program whose specificatton (is x,
inx y,outz) , that realizes some predicate whose arguments, arénteger v,

a structure namefdo , andz, a structure namedghr . The code generated for a
program that realizes this specification would have the following function header:

intdolt (intx, foo*y, bar* z)

Note thaty andz are declared with one level of indirection, becauise
a destructively consumed input argument, aman output argument.

7.2 Code for Procedure Compositions

Once the C function’s skeleton is in place, code production proceeds for
the procedure composition. Each procedure is turned into fragments of code that
are fit into the framework of the code that has been previously generated. There are
two general forms for the code that is produced for a procedure. If the procedure s
is complete, it is implemented as two code fragments that surrasuatass
continuation

/I .. first part of S

/.. success continuation

/.. deallocation of output variables of s
/l..remainder of S

The success continuation is a hole that is filled by appropriate other
procedures. The code in the success continuation is executed repeatedly as the
complete procedure iteratively produces qualified output tuples for the formula it
realizes. The code in the success continuation can force an early break out of the
iteration by setting_stop to 1.

Each successful iteration through a successful procedure must rid itself
of its output variables after the success continuation is executed. In the case where
the success continuation is a return to a calling program, it is the calling program’s
responsibility to consume the output values. (This was noted in the code shown
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above for the skeleton of a generator program.) Note, also, that the variable
allocation may have been pushed into the code in the success continuation, by the
algorithm described in Section 6.4. Failing these two exigencies, the output
variables of a complete procedure must be deallocated where shown above.

A procedure that is effective is implemented by one fragment of code:

/.. body of S

When execution exits this fragment of coGesuccess is 1 if an output
tuple has been produced, and O if there is no qualified output tuple. Both forms
assume thab_success is set ands_stop is not set on entry.

Program Invocation

Atoms are realized either by invocation of C functions that were
produced by compiling other programs, or by fragments of ckidewn to the
compiler for implementing the primitive predicates. In either case, the code must
fit into either the form defined for complete procedures or the form defined for
effective procedures. The set of stock implementations of the primitive predicates
is discussed later. A generator program (which is necessarily complete) is invoked
as shown below.

/I Complete use of a generator, ProgName
{
intG_first=1;
intG_loop;
/.. evaluate input arguments
G_loop= Pr ogNarme (&G _first, actual argunents);
while (G_loop) {
/I .. success continuation
if (G_stop)
G_loop=0;
else

L Inthe prototype compiler, these fragments are embedded in macros, whose use in
generated code looks very much like function invocation.
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G_loop= Pr ogNarme (&G_first, actual argunents);

}

The comment . success continuation " marks the spot for code that
is executed at the continuation of the procedure, as required by various
compositions described below. The code above this comment replaces a comment
of the form . first part of Progname ”. The code below comment replaces a
comment of the form.:remainder of Progname ”. Thus, this code fits the
general form for complete procedures.

A fragment of code that evaluates input arguments is necessary if
logical functions are employed in the terms of the atom that the compiler
implements through code more complex than a C expression. (In this case, there
may be more internal variables.) Input arguments need only be evaluated once,
because the input tuple does not change as successive output tuples are generated.

The variables_first  is used to signal the first invocation of the
program for the concerned input tuple. The vari@bleop is used to control the
iteration through result tuples. In any one program, there may be many instances of
these variables, which are distinguished by the block scope in which they reside.

The invocation of a non-generator program is much simpler:

/I Effective use of a non-generator
/.. evaluate input arguments
G _success= ProgNane( actual argunents);

This fragment of code replaces a comment of the forpady of
ProgName”, and so it satisfies the general form for effective procedures. A
recursive program is invoked where recursion occurs using the form above. Recall
that recursive programs are never generators.

A program that realizes a function is both complete and effective.
Because it is not a generator, it can be invoked as above for use as an effective
procedure. To be used as a complete procedure, it is invoked as shown below.

/I Complete use of a called function
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/.. evaluate input arguments
if( ProgName( actual argunents)){
/I .. success continuation

}

This fits the general form of a complete procedure, even though it is
known ahead of time that the success continuation executes at most once.

Disjunction

The generated code for the effective realization of disjunction,is
trivial. Both component procedures are effective.

/I Disjunction ( s(t)
/.. body of S
if !G_success){
G_success=1,;
/.. body of t
}

In short: do s; if it fails, try t. In contrast, the complete implementation
must generate all results for s and then all results for t. The code shown below
combinex complete procedures into a complete disjunction.

/[ Disjunction, generator: sOt0...
{ intG_branch=0;
intG_loop=1;

while (G_loop) {

switch (G_branch) {

caseO:
/I .. first part of S
gotoOr_Success_ N,

Or_Back N 0:

/l..remainder of S
break;

case 1:
/I .. first part of t
gotoOr_Success_ N,
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Or_Back N 1:
/I ..remainder of t
break;

case K
/I .. first part of last disjunct
gotoOr_Success_ N,
Or_Back N K:
/I ..remainder of last disjunct
break;
default: error ("Errorin generated code\n");

}
if (G_branch++>=K) G_loop=0;
continue; // while (G_loop)
Or_Success_ N
/I .. success continuation of sOt0...
if (G_stop) break; // from while (G_loop)
switch (G_branch){
case 0: goto Or_Back_ N _O;

case K:gotoOr_Back_ N_K;

}
}//while (G_loop)

}

The variables_branch keeps track of which component procedure is
currently generating result tuples. When all have run their coursehitbe loop
terminates, and execution falls out of the code fragment. Thedalsekcess N
serves as a single point where the success continuations for all the disjunctive
components are combined into one.

Nis a number that serves to keep distinct the labels used in the code
produced for different disjunctions. Other compositions shown below also require
a distinguishing number. A single global “ticket teller” is used during code
production for a program to generate a sequence of unigue numbers. This is a
common method for generating unique names in the back-end of a compiler.
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Conjunction

The first case for conjunction combines two complete procedures to
produce a complete result. It simply nests the code for the second procedure within
the success continuation for the first. Recall from the table in Lm. 14 of Chapter 5
that the inner procedure must terminate.

/I Conjunction, complete: t(s)
/.. first part of S
/I Success continuation of S
/.. first part of t
/.. success continuation of ( t(9)
/l..remainder of t
/l..remainder of S

In the second case for conjunction, a complete procedure and an
effective procedure are combined to produce an effective procedure.

/I Conjunction, effective from complete: t(s)
/.. first part of S
/I .. body of t
if (G_success) G_stop=1;
I ..remainder of S
if (G_stop)
G_stop=0;
else

G_success=0;

The code fragment above is the first example wbesep is set to
break out of a complete procedure’s iteration. Notice¢hatbp is reset outside
the scope of the complete procedure whose iteration is interrupted. The complete
procedure can be produced by any of the code fragments described in this chapter
for complete procedures, including the previous fragments for composing
complete conjunctions and disjunctions. They all cause execution to fall all the
way through whes_stop is set.

A special case deserves mention. The code fragment above can be used
to turn a complete procedure into an effective procedure when the body of t is
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empty, i.e., when t realizes the formaltae . Because_success is set on entry,
theif statement forces an exit from the iteration when the complete procedure
returns its first result tuple. This special case is shown below:

/I Conjunction, effective from complete: t(9)
{

intG_first=1;

intG_loop;

/.. evaluate input arguments
G_loop= Pr ogNane (&G _first, actual argunents);
while (G_loop){
if (G_success) G_stop=1;
if (G_stop)
G_loop=0;
else
G_loop= Pr ogNane (&G _first, actual argunents);

}

if (G_stop)
G_stop=0;

else
G_success=0;

While the code above works, and allows a generator program to be used
as an effective procedure, it can clearly be optimized. The final case for

conjunction creates an effective procedure from an effective procedure fortand a
total function s:

/I Conjunction, effective from effective & total fn: t(9)
/I ..body of t
if (G_success){
/.. body of S
}

Because s is a total function, it never fails. Assignments are the most
common total functions.
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Existential Quantification & Negation

Existential quantification is implemented as a block that provides scope
for the quantified variables, and definition of those variables at the beginning of
the block. The general form is:

/[ Existential quantif ication: ( 04) ¢
{

/I .. declare quantif ied variables
/.. body of effective procedure that realizes ¢
/.. deallocation of quantif iedvariables

}

The variables are indirect, meaning that they are declared as pointers.
The actual allocation of an existentially quantified variable occurs when it is given
a value, either as an output variable from a procedure, or within a primitive
predicate. The actual deallocation occurs where the algorithm of Section 6.4
decides. As discussed there, and below in Section 7.4, deallocation can occur
through use as a destructively consumed input argument, through destructive
updatevia data structure isomorphism, or simply by reaching the end of the scope.

Only an effective procedure that has no output variables can be negated.
(Of course, a complete procedure can be turned into an effective one, as described
above, and output variables can be shed through existential quantification.)
Negation merely complements the boolean varigbbaccess :

/I Negation: Is
/.. body of s(no output variables)
if (G_success)
G_success=0;
else
G_success=1;

Universal Quantification

Universal quantification of an implication +8i)( ¢@) Oi) —
combines a complete procedure that generates all the values to be tested and an
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effective procedure that tests these values into an effective procedure that succeeds
if all the generated values pass the test. The code for this is shown below.

/I Universal quantif ication of implication: g 4t

{

}

/.. def inition of quantif ied variables, a
/I .. first part of S
/I Success continuation of S
/.. body of t
if (/G_success) G_stop=1;//failed
/l..remainder of S
if (G_stop) {
G_stop=0;
G_success=0;

Like existential quantification, universal quantification introduces a
new block in which the quantified variables are active. Unlike existential
guantification, the variables are direct, and are automatically deallocated by the C
machine at the end of the block. As was seen with conjundiemp is set to
break out of a complete procedure’s iteration, and is reset outside the complete
procedure’s scope.

Summary of Code Production

The exposition above describes code production for all procedure
compositions discussed in Chapter 5 and Chapter 6. All that remains is to describe
the implementation of primitive predicates. As promised, the variables that are
artifacts of code production are summarized in the table below.

Variable C scope Purpose
G_success function Indicate success or failure of an effective
procedure.
G_stop function Break out of complete procedure’s iteration.
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Variable C scope Purpose
G_loop block Control complete procedure’s iteration.
G_first block Indicate whether an invocation of a complete
procedure is first or later for an input tuple.
G_branch block Indicate current component of complete
disjunction.

7.3 Functions and Base Predicates

The programming environment must provide an initial procedure
library, with procedures that realize the predicates of the base logic. Each predicate
may have several realizations, with the corresponding procedures having different
argument modes or semantic properties.

The back-end must also produce code for the functions in the logic.
This is required when a literal is realized, since the input arguments to the literal
can be arbitrary terms.

This section describes the implementation of the logic’s functions and
base predicates. The realization of base predicates for data structures, just like
other procedure compositions, can require that assertions in the logic hold true in
order for their semantic properties to obtain. Some of the realizations of the data
structure predicates allocate memory, and others perform destructive updates.

Primitive Sorts

The back-end generates code for all the functions on the base sorts and
the primitive data structure sorts. In other words, the compiler generates code that
evaluates any term invoving only these sorts. These functions are the basic
functions for arithmetic and character string manipulations. The concerned
predicates for these sorts are equality and inequality comparison. These predicates
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are realized as described below.

= Realized as a function that always succeeds when one side is an input argument
and the other an output argument, and as an effective procedure that always halts
when both sides are input argument.

< Realized as a complete, non-looping procedure for integers when one side is an
input argument and the other side is an output argument, and as an effective
procedure that always halts when both sides are input arguments, for all the base
sorts, excepaddress , and the primitive data structure sorts, exeajulr . Note
that the first realization generates sorted output that is ascending if the output
argument is on the right and that is descending if it is on the left. For the second
realization, the first argument is bounded above and the second is bounded below.

The corresponding implementations are also assumed for ,>, ,and ,
except that requires both sides to be ingutraents.

Pointer Dereferencing

Pointer dereferencing is a special case, because it involves a predicate
(=) on a base soraddress ), but the “output” argument is an arbitrary data
structure, to wit, the data structure that is referenced. Moreover, a pointer
dereference, unlike the other predicates, does not make a formula true, or check
that a formula is true. The form of a pointer dereference was described in
Section 3.6. Itis shown below.

(XOy)(&x=r 0O...)

The pointer must be an input variable to this formula. In order to
dereference, the formula must be true. The prerequisite assertion is:

( DxOy)(&x=r)

The reason for this is that a pointer carries no information. When a
pointer is dereferenced, tagsumptions that it points to a particular kind of data
structure, in this case, an element of a known set. The act of dereferencing does not
show the existence af but rather, makes the particulaavailable to other
formulae within a scope, to the formulae masked by the elision (n the
dereference example above. In the computation gxaigtformally an output
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variable to the literadx=r, since it is available after the literal’s execution. But in
this casex is identified, rather than produced, and at the end of the existential
scope, it is not deallocated unless it is removed from the set.

Data Structure Sorts

Isomorphism, ::, is the important predicate for data structure sorts. With
both sides as input, this predicate asks whether the two data structures are
identical, modulo different mappings to memory, but with corresponding pointer
values. With one input argument and one output argument, this predicate performs
adeep copylin this case, the input argument is often a term involving data
structure functions.

A term (other than a variable) whose sort is a complex data structure
sort is allowed only as an input argument to data structure isomorphism. Such
terms are a variable, called thiederlying variablemodified by data structure
functions as described in Section 2.7. It would be easy to straightforwardly apply
the modifying functions to the data structure instance, but in general, this is not
possible, because the underlying variable to which the instance is bound is, like all
variables in Galois, a logical variable, and therefore it cannot be modified. A value
for the term is calculated in one of two ways.

The variable can be modifieth some (hopefully, most) cases, the data
structure instance can be directly modified because the underlying variable will
see no further use in the program, and it is scheduled for deallocation, either
because it is a destructively consumed input argument, or because it is an
existentially quantified variable that will not survive beyond its scope. The next
section will describe how this is detected.

The variable is copiedlhe back-end can generate code to copy a
contiguous data structure instance — i.e., one that has no sets — if it can determine
the length of the arrays involved. (This is discussed below.) More generally, for
complex data structures, the programmer will have to write a program that
implements data structure isomorphism. (The programmer writes a predicate that
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performs operations on parts of the data structure, these being simpler operations
than isomorphism of the whole, and then verifies that the defined predicate is
logically equivalent to data structure isomorphism. This programming
methodology is discussed in Chapter 1 and Chapter 3.)

The back-end must generate code to allocate contiguous data structure
instances both for evaluating terms, as discussed above, and also for existentially
guantified data structure variables. If the data structure instances do not involve
arrays, or if the arrays have a fixed length, then the calculation of the instance’s
size is easy. If there are arrays whose size is not known, then realization of the
concerned literal generates a prerequisite assertion as shown below.

len( array_exp)= integer_term

Here, the programmer must not only verify an assertion, but must also
supply part of it, to wit, the right-hand side (indicated byeger _term). This is
the one case where this is required.

A similar prerequisite assertion is generated when an array is indexed or
when a subarray expression is evaluated. Then, the concerned assertion, for each
subscripting expression, is:

0 subscript_expx | en(array_expr)

Here, as usual, the assertion is fully generated by the front-end, and the
programmer only has to verify it.

Set Sorts

As described in Chapter 3, the set valued functions have only one
purpose: the control of memory management. (Memory management is discussed
in more detail in the next section.) A data structure instance can be added to a set
only if (1) it is bound to a destructively consumed input variable, or (2) it is bound
to an existentially quantified variable. In either case, the point in the computation
graph where the data structure instance is added to the set must follow every other
use of it. (Determining this is discussed in the next section.) Adding a data
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structure instance to a set acts to deallocate the variable to which it is bound.
Existentially quantified variables are normally deallocated because they have no
purpose outside their scope, and destructively consumed input variables are
normally deallocated because this is the specified semantic for the program.

The function that removes a data structure instance from a set can be
applied only in a data structure term that is the input argument to a data structure
isomorphism, as discussed above. The variable bound to the removed set element
is destructively consumed by the literal, and the data structure instance bound to
the variable is deallocated. Consider the formula below.

(xOz.y)(&x=r Ow::z{...;y»X;...})

This formula can be realized only if bathandy are destructively
consumed by the literal:z{...} . Obviously, this kind of fragment is intended to
implement a destructive updateypiwhere certain parts gfare removed.

7.4 Variable Allocation & Deallocation

The code to allocate and deallocate contiguous data structures is trivial
if the amount of memory is known. A deallocate node has a precondition identical
to that described for allocation of a data structure term in the previous section, i.e.,
the length of an array must be known.

Deallocation of more complex data structure instances requires a
program that realizes data structure isomorphism, i.e., that performs a deep copy.
A program that realizes a deep copy can be automatically tweaked to deallocate its
input data structure . When it is compiled, the following changes are made. First,
every memory allocation for the output variable is pushed onto a stack. Second,
before the procedure’s successful return, it iterates through the stack and
deallocates all the concerned memory. This tweak will convert a procgdure
y) , with destructively consumedand outpuy, that implements:y , into a
procedurer(x) that deallocates.
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8. Compilation Examples

Two examples of compilation are presented below. The first is a simple
example that permits the workings of the procedural calculus and code production
to be followed in detail. The second example is the progoastPtsinsert
from Section 3.5, which inserts a point into an ordered linked list. This example
uses dynamic memory, and illustrates tip@mizeDeallocation algorithm from
Section 6.4.

8.1 A Simple Example

The example program is an array search. The predicate below
(InArray ) is true of an array, upper bound, key value, and index when (1) the
index is non-negative and less than the upper bound, and (2) the indexed element
in the array equals the key value. The specified progranii{Array ) realizes
the predicate as a search for an index value.

/[ Define predicate InArray
InArray (key: int, a: int[], uprBd: int, idx: int) =

( O: integer) (
0 j<uprBd [Oa[j]=key Oidx=j

/I Specify program FindInArray

{uprBd len(a)}

FindInArray (inkey, ina, in uprBd, outidx)
{InArray} effective, terminates.

The program specification says that the prograainArray  realizes
the predicate with all arguments as input, excepitfkor which is an output
argument. It further qualifies the program with a precondition on the predicate’s
input arguments: the program will be executed only when (is guaranteed to work
only when)uprBd len(a) . The program igffective meaning that it produces only
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one output value that satisfies the predicate. The program returns a status of
success if there is such an output value; otherwise, it returns a status of failure.

The compilation of this program is described below. In this example, we
focus on the procedural calculus, and ignore the equivalent route through
computation graphs.

Following the recursive form of theompile procedure from
Section 5.3, begin by lettingy represent the desired procedure composition. The
first logical construct is(j) ¢. The procedural calculus only provides one rule for
existential quantification. So let j be the projection procedure that sets the scope
for an existential variable. Then:

Co=1i(Cy), and
C1 i1s the procedure composition that realipes

¢ is the conjunctionD j<uprBd 0O 8) . There are two rules for
effectively realizing conjunction. (See the first two rows of table in Lm. 14 of
Chapter 5.) The library contains procedures that realize the litgtglrBd
either effectively or completely, so at this point, there is no way to choose between
the two rules. Choosing the second rule would cause further compilation to fail,
because the second component of the conj@ncgnnot be realized as a total
function. If this rule were tried first, tt@mpile algorithm would backtrack to
where this rule was chosen, and then try the remaining rule. We will proceed with
the one rule that results in a successful compilation. Thus:

u is a complete realization @f<uprBd , with outpuf ,
Co=i(u(c), and
C» is the procedure composition that effectively realtzes

0 is the conjunctionfjl=key Oidx=j . This brings us to the tail of the
recursive descent, since both components of the conjunction are literals. Only the
second rule for conjunction applies@oThe first literal is realized as a
characteristic function that is not total, and the second literal is realized as a total
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function whose output igx . Thus:
tis an effective realization afjl=key ,

s is a total function that realizes=j , and

Co=J(u(t(s))).

The Compile algorithm calculates the precondition for a procedure
composition from the inside out. The procedure s has no precondition (or to think
of it another way, it has the preconditiome ). The procedure t has the
preconditioro j<len(a) , which is unchanged by its composition with s. The
procedure u also lacks a precondition, but in sequential composition, it weakens
the precondition of t(s), so that the precondition ofsi(t§0 j<uprBd O
Oj<len(a) . The projection procedure has no precondition.

Before producing code, the prerequisite assertion must be verified.
Recall from Section 5.3 that the prerequisite assertianlif, where is the
precondition specified for the program, in this casel,In(a) , and b is the
precondition for the procedure composition, which was just calculategirBd
0 Oj<len(a) . Thus, the prerequisite assertion is:

ObdIn(a) 0O (Oj<uprBd 0O 0j<len(a))

In this case, the prerequisite assertion is a trivial matter of arithmetic
that is easily verified by an automatic theorem prover, so the programmer would
not have to intervene. Notice that if the program specification had lacked a
precondition, the theorem prover, equally easily, would have shown that
(0 j<uprBd O 0 j<len(a)) isnota theorem. This would force the programmer to
modify the predicate definition or to put the needed precondition into the program
specification. Wheneve&indinArray is used in other Galois programs, the
compilation algorithm will insist that it is invoked with a search bound that is
within the array limits, by virtue of this being its precondition, just as the
compilation algorithm insists that array subscriptuigy, , satisfies its
precondition for its use irindInArray

C code is trivially generated for this procedure composition, following
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the scripts in Chapter 7. First, the skeleton for an effective function is laid. Note
the one level of indirection used with the argument, because it is an output
argument.

int FindInArray (intkey, inta[], intuprBd, int* idx) {

{
int G_success=1,;
int G_stop=0;
/1. body of ju(t(9))
return G_success;
}

Next, a scope for existential quantification is put in. Because
neither an array norsauct , itis represented directly as a C automatic variable
and no explicit deallocation is required:

int FindInArray (intkey, inta[], intuprBd, int* idx) {
{
intG_success=1;
int G_stop=0;
/I Begin existential scope
{
intj;
/.. body of u(t(s)
}
/I End existential scope
return G_success;

}

The procedure u is completely realized. It has a first part and a
remainder part, surrounding its success continuation. According to the
composition rule, the success continuation contains a check to exit the loop:

int FindInArray (intkey, inta[], intuprBd, int*idx) {
{

intG_success=1;

intG_stop=0;

/I Begin existential scope

{
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intj;
/I Conjunction, effective from complete
=1
while (!G_stop && 0<=++j && j<uprBd){
/1 .. body of (9
if (G_success) G_stop=1;
}
if (G_stop) G_stop=0;
else G_success=0;
}
/I End existential scope
return G_success;

}

The inner two procedures are effectively realized, and so they generate
very simple code. The complete C coderiadinArray Is shown below.

int FindInArray (intkey, inta[], intuprBd, int* idx) {

{
intG_success=1;
int G_stop=0;
/I Begin existential scope
{
intj;
/I Conjunction, effective from complete
=1
while (!G_stop && 0<=++j && j<uprBd){
if (a[j]==key) G_success =1, // Code for t
else G_success =0;// Code for t
if (G_success) *idx=j; // Code for S
if (G_success) G_stop=1;
}
if (G_stop) G_stop=0;
else G_success=0;
}
/I End existential scope
return G_success;
}
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The scripts from Section 7.2 produce code that exhibits some awkward
passages. But except for the excessive checkiGgsotcess , and the use of the
extra variabl&_stop to break out of loops, the code above is a straight-forward
implementation of the specified program. (A good C compiler would optimize the
tests on common expressions, producing an executable that runs with respectable
efficiency.)

8.2 An Example with Dynamic Memory

Given that a program does not use dynamic memory, it can be compiled
without converting its procedural composition into a computation graph. (But as
Chapter 6 notes, there are human interface reasons to use the computation graph.)
The next example manipulates dynamic memory. The explanation of this example
will focus on this aspect of compilation. The example is from Section 3.5. Itis the
specification for a program that allocates a point and inserts it into an ordered
linked list. The computation graph that results from applying the constructions in
Chapter 6 is shown in Figure 1.
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New::Pt{Next=HPt.Next} OutL:InL{Pts [(Pts{«New; HPts.Next=&New}}

<

LEM@
New, InL

Figure 1: Computation graph for doAscPtsInsert prior to adjustments for
variable deallocation.

Code cannot be produced for this graph, because the vamneliesnd
InL are not deallocated until just before the success node, implying that they are
available until then. Conflicting with this requirement, the only procedures known
to the compiler that realize the literalstL::InL{..Pts@Pts{«New ..}}
consume both of these variables. (The compiler can automatically realize these
literals only as a destructive updatento that also consumegw .) This
problem is alleviated by th@ptimizeDeallocate algorithm from Section 6.4.
Its execution pushes the deallocation nodes forward in the graph, producing the
computation graph shown in Figure 2.
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Figure 2: Computation graph for doAscPtsInsert after adjustments for
variable deallocation.

In this computation graph, the deallocation nodes for the varigbles
&InL appear only after the literals that must consume these variables. Following
the rule prescribed in Section 6.4, the deallocation nodes are removed. The
computation graph then meets the syntactic rules on the signatures for nodes and
arcs. In other words, variable allocation and deallocation will be handled correctly.
The resulting code is shown below. It resides in the scope of the necassary
definitions. Comments beginning with “* ” indicate how the code is changed
because of the adjustment for dynamic memory.

intdoAscPtsInsert (void* InL, Point Pt, void** OutL) {
{

intG_success=1;
int G_stop=0;
/I Begin existential scope

{

void* Here;
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Point* New; // Indirect becauseiitis a struct
/I Effective invocation of doAscPtsSearch
G_success =doAscPtsSearch
(*((PointList*)InL), Pt.X, NULL, &Here);
if (G_success){
[/l Effective realization of if-then-else
if (Here==NULL){
/I Realize New::Pt{Next=InL.Head}
New = (Point*) malloc (sizeof(Point));
New->X=Pt.X;
New->Y=Pt.Y;
New->Next = ((PointList*)InL)->Head;
/[ Realize OutL::InL{Head=&New; Pts [(Pts{«New}}
*QutL=InL;//Consume InL
((PointList*)(*OutL))->Head=New;
}
else
/I Begin existential scope
{
void* HPt;
HPt=Here; // Dereference Here
/I Effective conj. from eff & total fn.
if ((Point*)HPt)->X!=Pt.X) G_success=1,
else G_success=0;
if (G_success){
/I Realize New::Pt{Next=HPt.Next}
New = (Point*)malloc (sizeof(Point));
New->X=Pt.X;
New->Y=Pt.Y;
New->Next=((Point*)HPt)->Next;
/[ OutL::InL{Pts [(Pts{«New; HPt.Next...}}
*QutL=InL;//Consume InL
((Point*)HPt)->Next=New;
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/[** Atthis point, New would have been deallocated
/**if G_success were set.

}

/I End existential scope

/[** Atthis point, InL would have been deallocated
/I**if G_successwere set.

return G_success;

}

Again, the code above is awkward in places, but the implementation is
reasonable. There are several important points. First, the literals néhelis
added to a set consume it by virtue of returning it as part of the output data
structure. There is no code generated for this. By definiien,becomes an
element in the set of the output data structure . It is the programmers
responsibility to create data structures where all parts are reachable. (Using
theorem proving tools, he can prove this as a theorem in the logic.)

The procedures that produgewv as output, i.e., the procedures that
realize the two literals of the forRew::Pt{..} , must allocat&lew. As described
in Chapter 5, this is part of their role in producing an output data structure. In the
code above, these procedures are realized as inline code, but the reader should
consider that this code could have been encapsulated in a C funetiois. not
explicitly deallocated anywhere in the above code, because the program cannot
fail between its allocation and its return to the application as patilof.

Finally, note that the data structure isomorphism that defimes is
realized through pointer assignment and destructive update, as discussed
throughout much of this work.
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9. Conclusion

In closing, we review what this research has accomplished, describe the
status of current development, and discuss directions for future research.

9.1 Accomplishments

In [39], Lowry describes how software engineering is moving toward
deeper descriptions of software systems, i.e., descriptions that include knowledge
about software from which programming environments can automatically or semi-
automatically deduce revisions, extensions, and compositions of existing software
systems to meet new and revised specifications. This trend, which the author
believes both desirable and inevitable, requires the representation of knowledge —
in rules or through logic — about the covered programming domains. Automatic
programming systems have encapsulated the knowledge for specific application
domains such as oil-well logging and VLSI design, and for general high-level
algorithms. Graphical user interface (GUI) development environments embody
rules about composing the various widgets and windows that are presented to an
interactive user and about coordinating the interaction between these and the
underlying applicatior’r.TraditionaI logic programming and production systems
support direct rule-based programming against high-level data types.

The research in these areas has, until now, either ignored the problem of
general data structure programming or has assumed that component libraries for
this purpose would somehow be providéghrogramming in the future does not
require many new data structugesdimperative languages support sufficiently
flexible software reuse, then this assumption is practical. Otherwise, we need a
representation for data structure programming that supports reasoning from and

1 GUI development environments are not traditionally viewed as a kind of automatic
programming, but because of the noted characteristics, they fit within this category, at
least for the purpose of the point being discussed.
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building of a knowledge base that in turn supports constructing data structure
programs and proving their properties.

This research provides a representation and a compilation technique for
data structure programs that:

* generates executable code from logical specifications,
* makes available the efficiencies of pointer reference and destructive update,

» facilitates proofs of the properties of these programs, including termination and
the maintenance of data structure invariants, and

* supports the construction of libraries of the proven theorems and generated
programs for reuse, so that more complex data structures can be built on and
verified from the programs and knowledge about simpler data structures.

This research has led to subsequent work by others and the author to
develop a prototype compiler and programming environment, and to explore the
ramifications of this technology.

9.2 Current Development

Under a TARP grant [11] stemming from this research, several
colleagues and | have built a prototype Galois compiler. This compiler implements
the code generation described in this dissertation, producing C code. It supports a
simple procedure library. Computation graphs are created and displayed, and these
are used to show the programmer the prerequisite assertions required for code
generation.

This current prototype suffers a few lacunae. Two of these will be
addressed by work planned under the above-mentioned grant. First, the
programming environment does not — yet — include an integrated theorem prover
and, because of this, there is only little support for a theorem library. We plan to
build a bridge to the Boyer-Moore theorem prover. As a first step, the axioms of
the logic of Galois have been translated into rules in this theorem-prover. Coming
steps will integrate the theorem-prover into the programming environment and
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will increase support for a theorem library.

Second, we need more experience with this technology to learn where it
works well and where it has unexpected problems. This is also part of ongoing
work.

9.3 Future Research

The first two directions offered for future research — object-oriented
programming and parallel programming — extend Galois in natural directions.
The third direction discussed pertains to Galois, but has much larger scope.

Support for Object-Oriented Programming

Galois supports a simple kind of specialization hierarchy. Data structure
classes are defined by logical invariants (logical predicates), and one data structure
class is a specialization of a second if its invariant is logically stronger. For
example, an ordered array is a heap, which is an array. These data structure classes
are defined through invariants erdered(a) , heap(a) , andarray(a) — and the
specialization hierarchy is reflected in theorems that show the logical strength of
these invariantsirdered(a) [ heap(a) andnheap(a) O array(a) . Given these
strength theorems, general theorems that apply to the more general data structures
also apply to the more specialized data structures, and because of this, programs
that function with more general data structures also function with the more
specialized data structures.

In Galois, this kind of specialization operates on one underlying sort.
Indeed, a theorem such&g) 0B(x) is not syntactically well-formed unless the
predicates andB take an argument of the same sort. This is clearly a limitation on
Galois’s ability to deal with a specialization hierarchy.

In the area of object-oriented programming, we know well the benefits
of polymorphism, where a procedure p(x) can take as an argument any object x
that belongs to some class or any specialized subclass. Polymorphic logics and
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logics for reasoning about classes have been explored [30, 31], but not realized as
logic programming languages.

The integration of logic programming and object-oriented
programming holds the potential of solving one of the major problems in object-
oriented programming. Programmers in C++, Eiffel, and other object-oriented
programming languages often find that existing classes cannot be reused through
derivation without modification. This is because (1) the imperative code that
implements a class makes assumptions about how derived classes work, and (2)
the designer of a class cannot anticipate the demands that will be placed on the
class by future derivation. If methods were implemented through logical
specification rather than through procedural code, (1) would be much less of a
problem. The logical specification of each public method would be part of the
class’s interface. A derived class could augment this logical specification in
creating its version of the same method. Despite the fact that this might yield very
different procedural code, the specification of the base method is reused, which is
to say, the work that went into creating the specification is put to greater good. In
short, if methods were specified in logic, it would be possible in creating a derived
class to inherit and modify base methods at a level that supports more reuse than
by invoking encapsulated imperative code.

Support for Parallelism

To deal with pointers and non-contiguous data structures in the logic, it
was necessary to make all parts of a data structure explicit, using the set construct,
and to impose assumptions that restrict aliasing among output arguments and
destructively consumed input arguments. These same provisions make the
computation graph an expression of data and control dependency. Wherever the
computation graph forks and joins, indicating the realization of disjunction or if-
then-else, the two paths can be executed in parallel. If there is a test at the branch,
and the whole is effectively realized — i.e., the program realizes an if-then-else —
then such parallel execution would be speculative, since only the results of one
branch are needed.
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In the case of sequential composition, parallel execution is possible
when there is no data dependency, i.e., when none of the input variables to the
second procedure of the composition are outputs from the first procedure. These
two rules allow the computation graph to be interpreted as an expression of
parallelism much as the graphs in parallel programming environments, such as
CODE [12, 49], and reengineering tools such as E/SP [61].

There are more subtle kinds of parallelism that are not so easily
deduced from the computation graphs. In particular, it is often useful to unroll
recursion and execute the different depths of a recursive procedure in parallel.
Furthermore, the division of a program into predicates and procedures for
conceptual and functional purposes does not always reflect the best division for
parallelism. Interprocedural parallelism requires analysis of dependencies
between pieces of a procedure and pieces of its calling procedures.

These kinds of analyses have been explored [18] for traditional
programming languages. Galois brings the potential that the same logic that
expresses programs can be used to reason about control and data dependencies.
Predicates such a@ssjoint  directly express information about data dependency.

Integration of Knowledge-Based Programming
Systems

This chapter began by emphasizing the need for an automatic
programming system that targets the problem of data structure programming. Of
course, automatic programming has already proved useful for particular
application domains, for transaction based modeling, for general high-level
algorithms, and — under the guise of interface builders — for graphical user
interfaces. The development of most real programs usually involves more than one
of these aspects, e.g., a new program for modeling oil field depletion might use a
new graphical user interface, extend some existing high-level algorithms for oil
field modeling, and use some new data structures to efficiently realize these
algorithms. Even when automatic programming systems are used to build some
parts of a program, traditional programming languages are relied upon as the
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common ground of last resort to glue the pieces together.

As long as this situation holds, software engineers will continue to view
traditional programming languages as their major tool of the trade, with each
engineer learning the one or two automatic programming systems that are most
applicable to their problems. This raises the question of whether it is possible to
create an automatic programming system that provides this glue in a way that
supports greater reasoning about and reuse of software components than do
traditional languages. If such a system were to rely on GUI development
environments for user interaction, on various automatic programming systems for
high-level and domain specific algorithms, and on Galois for data structure
programming, then it would not have to include facilities to deal directly with any
of these aspects of a program. It would only provide the glue. But if this glue is not
made of user-interaction, algorithms, or data structures, of what does it consist?
And what kind of framework can deal sensibly with such diverse systems for
creating software components? To these questions, the author has no ready
answers.
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Glossary

Address value. Seedata structure instance

Application. Galois programs are designed to be components invoked from a
larger application program. This larger application program is written in a
conventional programming language, and must abide by certain conventions to
correctly use Galois programs. (Galois programs that invoke other Galois
programs are guaranteed by the compiler to always abide by these
conventions.)

Atom . A positive literal. (See aldderal.)

Base logic. The base logic is that described in Chapter 2. Programming extends
the logic with new predicates that are recursively defined.

Base sorts. The base sorts aieeger |, floatingPt  , character , andaddress .
These sorts anmeot data structure sorts, and the values in the domains of these
sorts are atomic.

Calculus of procedure composition. A set of operations that compose
procedures (g.v.) and a set of rules that calculate the semantic definition (g.v.)
of the resulting procedure from the semantic definitions of the component
procedures.

Complete. Seeexecution properties

Computation graph. A directed graph that is generated from a program
specification that shows the flow of tuples and the operations on these tuples at
each node in the graph.

Consumed input (signature, tuple, variable).  The destructively consumed
input variables are those whose bindings are broken and whose values are
deallocated by the successful execution of a procedure. These variables
constitute, as a set, the procedure’s destructively consumed input signature,
and the values bound to them on procedure execution constitute, as a set, the
destructively consumed input tuple.
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Data equality. Two data structure instances are data equal if their data values are
equal, i.e., the instanceg <« > and <%, »> are data equal iff (. (See also
strict equalityanddata structure isomorphism

Data structure class. All data structure instances that have a common sort and
that satisfy a common invariant, i.e.qk) is a predicate whose argumentis a
data structure sort, then all data structure instances that sgtjsfgompose a
data structure class.

Data structure instance. A data structure instance is a value in the domain of a
data structure sort. In the intended model, a data structure instance is an
ordered pair €, »>, wherea is the instance’address valugandv is the
instance’'data value

Data structure isomorphism.  Two data structure instances are isomorphic if
(1) their data values — excluding embedded pointers — are equal, and (2)
analogous embedded pointers reference analogous parts of the data structure
instances. Data structure isomorphism formalizes the notion of two data
structure instances being “the same.” (See @ta equalityandstrict
equality)

Data value. See data structure instance.

Domain. A sort’'s domain is the set of values that provide denotations to terms in
the sort. The domain of a constant, variable, or term of a logic is the domain of
the constant’s, variable’s, or term’s sort. The domain of a signature is the cross-
product of the domains of its variables. The symbol is used to denote domains.
In the relational algebra, variables are directly assigned to domains.

Effective. Seeexecution properties
Equality. Seestrict equality data equalityanddata structure isomorphism

Execution properties. The result sequence of a procedure can display several
properties relative to a postcondition. The proceduseusdif every tuple in
the result sequence, together with the input tuple, satisfies the postcondition. It
is effectiveif it is sound, and whenever there exists a qualified result tuple, the
result sequence is just one such qualified result tuple, followed by . Itis
completdaf the result sequence includes all qualified result tuples, up to data
structure isomorphism. The procedteeminatesf the result sequence ends in
. (See alsgemantic definitior)
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Function. (1) A procedure that is both effective and complete, i.e., a procedure
whose postcondition qualifies at most one result tuple (up to data structure
isomorphism) and that produces this tuple if it exists. A functiootéd if a
gualified result tuple exists for each input tuple. (2) The unit of encapsulation
of C code.

Generator. A program that is complete, but that is not a function. In other words,
a generator is a program that may produce many result tuples for each input
tuple. Because of this, it has a different calling convention than a program that
IS not a generator.

Input (signature, tuple, variable).  The union of the pure input (g.v.) and
destructively consumed input (g.v.) signature, tuple, or variables.

Interpretation. A denotational semantic for a logic. In this work, the logic is
interpreted in a relational algebra. The denotation of a formula is a relation
with the same signature. A formulafégdseif it denotes the empty relation with
empty signature. A formula tsue if it denotes the relation with empty
signature that contains just the null tuple.

Invariant. A predicate, usually with one argument, that qualifies a class of data
structure instances, e.@tree(x) . See alsalata structure class

Literal. A predicate whose arguments are replaced by syntactically correct terms
(g.v.) of the appropriate sorts, optionally preceded by a negation symbol. If
preceded by a negation symbol, the formulariegative litera] otherwise it is
apositive literal

Logic. A logic comprises three things: (1) a formally defitetguage (2) a set
of sentences in the language, called the logikiems and (3)ules of
inferencethat allow one to form proofs by deriving new theorems from
existing theorems. A logic’s sentences are cdibenhulae A logic isrecursive
if its formulae and axioms are recursive sets. Traditional logics have languages
that follow a particular syntactic pattern: atoms are predicate symbols applied
to terms (g.v.), and formulae are atoms or other formulae that are combined
through the boolean participles and quantifiers. A traditional lodiistsorder
if the domain of quantified variables does not include functions, predicates and
formulae.
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Mode. The use (direction of data flow) of an argument to a program or a free
variable of a procedure. There are three moles pure input variable
provides a value from the execution environment that remains after execution
endslnx: a destructively consumed input variable provides a value from the
execution environment that is no longer available after execution is successful.
Out: an output variable provides a value to the programming environment after
execution is successful, but is not bound prior to execution. (Segsesmsmtic
definition)

Model. A model is an interpretation in which every theorem of the logic is true.

Output (signature, tuple, variable).  When a procedure successfully returns,
new values are bound to its output variables. The set of values constitutes the
output tuple. (See alsonsumed inpuandpure input)

Postcondition. A logical formula whose free variables are contained in the
union of the input and result signatures that qualifies the set of valid result
tuples for each input tuple. For a program, the postcondition is a predicate
whose arguments are the same as the specified program’s. (Seenadsdic
definition)

Precondition. A logical formula whose free variables are contained in the input
signature that qualifies the set of input tuples on which a procedure will
correctly function. (See alsemantic definition

Prerequisite assertions. The prerequisite assertions are a set of closed
formulae in the logic that the front-end generates at the same time that it
generates a computation graph. The procedure represented by the computation
graph is guaranteed to meet its semantic properties only if these assertions are
true. (These assertions can also be viewed as open formulae attached to
particular nodes on the computation graph.)

Procedural Calculus. See alculus of procedure composition

Procedure. Formally, a procedure is a function that maps an input tuple into a
sequencef output tuples. A procedure is implemented as a fragment of code in
the target language of the compiler. The calculus of procedure composition
gives rules for composing procedures. These compositions correspond to
different ways of gluing together code fragments.
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Program. A program is a procedure (q.v.) that satisfies a program definition, that
is bound to the program name designated in the program specification (q.v.),
and that is saved in the program library for reuse in creating larger programs.
The example back-end implements a program as a C function.

Program specification. A program specification is a semantic definition (g.v.)
for the program and a name for the program, where the postcondition for the
program is a named predicate whose arguments are the union of the input
signature and result signature.

Pure input (signature, tuple, variable).  The pure input variables are those
whose bindings remain across execution of a procedure. These variables
constitute, as a set, the procedure’s pure input signature, and the values bound
to them on procedure execution constitute, as a set, the pure input tuple.

Recursive predicate definition. A formula of the fornp(x,...z) < @,
recursively defines the new predicate symbdlhebodyof the definition®,,
is any formula, perhaps involving whose free variables axe.z . Given
restrictions on the use pfin ®,, in particular, that the occurs at only an even
negation depth withi®,, p may be added to the logic and an interpretatiqn of
may be added to the logic’s model.

Relation. A signature and a set of tuples with that signature.

Result (signature, tuple, variable). When a procedure successfully returns,
new values are bound to its output variables (g.v.) and original values remain
bound to its pure input variables (q.v.). These variables together are the result
signature, and the binding is a result tuple.

Semantic definition. The semantic definition of@ocedurecomprises (1) its
inputsignaturel andresultsignatureQ, (2) apreconditionwhose free
variables are contained in the input signature, (8)saiconditionvhose free
variables are contained in the union of the input signature and result signature,
and (4) a set aéxecution propertiesA procedure meets its semantic definition
if for any tuple in the precondition, its output sequence satisfies the execution
properties relative to the postcondition. (The italicized phrases also appear in
this glossary. See algwogram specificatio)
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Semantic map. For aformulap where V@)=10Q, thesemantic mas the
function f:1 — 22 that maps each input tuple irinto the set of result tuples
in Q where each result tuple in the set, together with the input tuple, satisfy

Semantics . The assignment aheaningto a languageRrocedural semantics
give meaning to a programming language by describing the computation
performed by each syntactically correct program. Any kind of semantics that is
not procedural is said to loeclarative Formal semanticassign meaning
through a formal theorypenotational semanticassign meaning through a
mathematical function that maps each syntactic part of the language to a
mathematical object. This object is called the ted&€motation and the text is
said toexpresordenotethis objectExamplesThe description of C in the
ANSI standard is an informal, procedural semantics. The Hoare calculus
provides a formal, declarative semantics. The usual model theory of logic is a
denotational semantics.

Signature. A relational signaturds a set of variables. Every variable has a sort,
so a relational signature characterizes the sort of a predicate or formula, or the
type of a relation. Aerm signaturas a sequence of sorts, the first of which is
the sort of the function or term, and the remainder of which are the sorts of the
term’s free variables or the function’s arguments. Given a teand a variable
x that has the same sorttaand that is not free in a relational signature for
the predicate=t is equivalent to the term signaturet of

Sort. The syntactic categories of terms in a logic are its sorts. In a single sorted
logic, such as first-order arithmetic, there is only one sort, which is the integer
sort in the case of arithmetic. A logic can express different kinds of objects by
having multiple sorts, for example, boolean and integer. (See [19] for an
exposition on multi-sorted logic.) Sorts are roughly analogous to types in
programming languages. See aldomain

Strict equality. Strict equality [ is the usual notion of equality that permits in
all contexts the substitution of “equals for equals,” and that denotes semantic
identity. This notion of equality is different from the informal notion of two
data structure instances being “the same,” since the latter is often applied to
data structure instances that don’t have the same address value. (Sie¢aalso
equalityanddata structure isomorphisin
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Term. Traditional logics include functions. Terms are the syntactically correct,
recursive application of functions to constants and variables. Thus, a censtant
or variablev of sorts is a term of sort. If f is a a function with signature
(sg,-.s p)andtq,..t ,aretermsofsod,,.s ,, respectively, then
fit q1,..t ) IS aterm of sor,.

Terminates. Seeexecution properties

Theorem. A logic has a deductive apparatus consistingxoddmsandrules of
inference Every formula that can be derived from the axioms by applying the
rules of inference is a theorem.

Tuple. An assignment of values to a set of variables. The value assigned to a
variable must be in the domain of the variable’s sort.Atlktupleis just the
empty set.
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